sams-tom's picture
Add base_models.py for bathy_model
069ff94 verified
import torch.nn as nn
from torchvision.models import resnet50, ResNet50_Weights
import torch.nn.functional as F
import torch
class ResNet50Custom(nn.Module):
def __init__(self, input_channels, num_classes):
super(ResNet50Custom, self).__init__()
# Store input_channels as an attribute for later access
self.input_channels = input_channels
# Load pretrained ResNet50 model
self.model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1) # Equivalent to pretrained=True
# Modify the first convolutional layer to accept custom input channels
self.model.conv1 = nn.Conv2d(input_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
# Replace the final fully connected layer to match the number of classes
self.model.fc = nn.Linear(self.model.fc.in_features, num_classes)
def forward(self, x):
# Forward pass through the model
return self.model(x)
def get_feature_size(self):
# Return the size of the feature map (before the final fully connected layer)
return self.model.fc.in_features
class Identity(nn.Module):
def forward(self, x):
return x
class AdditiveAttention(nn.Module):
def __init__(self, d_model, hidden_dim=128):
super(AdditiveAttention, self).__init__()
self.query_projection = nn.Linear(d_model, hidden_dim)
self.key_projection = nn.Linear(d_model, hidden_dim)
self.value_projection = nn.Linear(d_model, hidden_dim)
self.attention_mechanism = nn.Linear(hidden_dim, hidden_dim) # Output hidden_dim
def forward(self, query):
keys = self.key_projection(query)
values = self.value_projection(query)
queries = self.query_projection(query)
attention_scores = torch.tanh(queries + keys)
attention_weights = F.softmax(self.attention_mechanism(attention_scores), dim=1) # Softmax across hidden dim
attended_values = values * attention_weights # No sum here!
return attended_values
class MultiModalModel(nn.Module):
def __init__(self, image_model_feat, bathy_model_feat, sss_model_feat, num_classes, attention_type="scaled_dot_product"): # Add attention_type
super(MultiModalModel, self).__init__()
self.image_model_feat = image_model_feat
self.bathy_model_feat = bathy_model_feat
self.sss_model_feat = sss_model_feat
self.fc = nn.Linear(384, 1284)
self.fc1 = nn.Linear(1284, 32)
num_classes = int(num_classes)
if not isinstance(num_classes, int):
raise TypeError("num_classes must be an integer") # Raise a clear error
self.fc2 = nn.Linear(32, num_classes)
self.attention_type = attention_type # Store the attention type
self.attention_image = AdditiveAttention(2048)
self.attention_bathy = AdditiveAttention(2048)
self.attention_sss = AdditiveAttention(2048)
# Add more attention types as needed
def forward(self, inputs, bathy_tensor, sss_image):
image_features = self.image_model_feat(inputs)
bathy_features = self.bathy_model_feat(bathy_tensor)
sss_features = self.sss_model_feat(sss_image)
image_features_attended = self.attention_image(image_features)
bathy_features_attended = self.attention_bathy(bathy_features)
sss_features_attended = self.attention_sss(sss_features)
combined_features = torch.cat([image_features_attended, bathy_features_attended, sss_features_attended], dim=1)
outputs_1 = self.fc(combined_features)
output_2 = self.fc1(outputs_1)
outputs = self.fc2(output_2)
return outputs