--- license: apache-2.0 datasets: - SouthpawIN/senter-omni-data language: - en base_model: - unsloth/Qwen2.5-Omni-3B-GGUF tags: - any-to-any pipeline_tag: text-generation --- # 🎭 Senter-Omni **Multimodal AI Assistant with Cross-Modal Embeddings** ![Senter-Omni Fixed Banner](https://github.com/SouthpawIN/senter-omni/raw/main/senter-fixed-banner.gif) ## 🌟 Overview Senter-Omni is a 4B parameter multimodal AI assistant that understands and reasons across text, images, audio, and video simultaneously. Built on Qwen2.5-Omni with extended 128K context and Apache 2.0 licensing. ## ✨ Key Features - **🎯 ONE MODEL, ALL MODALITIES** - Single model for text, image, audio, and video - **⚡ TRUE STREAMING** - Real-time token generation (~0.234s time-to-first-token) - **🔓 OPEN & UNCENSORED** - Apache 2.0 licensed with unrestricted responses - **🧠 128K CONTEXT** - Extended RoPE scaling for massive documents - **💾 MEMORY EFFICIENT** - 4-bit quantized model for consumer GPUs - **🔍 CROSS-MODAL EMBEDDINGS** - Unified 1024D space for all modalities ## 🚀 Quick Start ```python from omni import OmniClient # Initialize Senter-Omni client = OmniClient() # Multimodal chat response = client.chat([ {"role": "user", "content": [ {"type": "image", "image": "photo.jpg"}, {"type": "text", "text": "What do you see?"} ]} ]) # Cross-modal embeddings embedding = client.embed("any content", modality="auto") ``` ## 📊 Model Specifications - **Parameters**: 4B (quantized to 4-bit) - **Context Length**: 128K tokens (RoPE scaled) - **Memory Usage**: ~8GB VRAM - **Modalities**: Text, Image, Audio, Video - **License**: Apache 2.0 ## 🔗 Links - **GitHub Repository**: https://github.com/SouthpawIN/senter-omni - **Training Dataset**: https://huggingface.co/datasets/SouthpawIN/senter-omni-data - **Demo Script**: Run `python senter_omni_demo.py` in the GitHub repo ## 🎯 Performance - **Time to First Token**: ~0.234s - **Text Generation**: 2-5 seconds - **Image Analysis**: 3-6 seconds - **Audio Processing**: 4-8 seconds - **Multimodal Chat**: 5-10 seconds ## 🛠️ Installation ```bash git clone https://github.com/SouthpawIN/senter-omni.git cd senter-omni pip install -r requirements.txt python senter_omni_demo.py ``` ## 📝 Citation ```bibtex @misc{senter-omni, title={Senter-Omni: Multimodal AI Assistant with Cross-Modal Embeddings}, author={Chris at Alignment Lab AI}, year={2024}, url={https://github.com/SouthpawIN/senter-omni} } ``` --- **Built with ❤️ by Chris at Alignment Lab AI**