kasimali commited on
Commit
54c7199
·
verified ·
1 Parent(s): 704b166

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +137 -0
app.py CHANGED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import gradio as gr
4
+ import fasttext
5
+ import torch
6
+ from torch.utils.data import Dataset, DataLoader
7
+ from transformers import AutoTokenizer
8
+ from huggingface_hub import hf_hub_download
9
+
10
+ # ----------------------------
11
+ # Download required models
12
+ # ----------------------------
13
+ print("Downloading IndicLID models...")
14
+ FTN_PATH = hf_hub_download("ai4bharat/IndicLID-FTN", filename="model_baseline_roman.bin")
15
+ FTR_PATH = hf_hub_download("ai4bharat/IndicLID-FTR", filename="model_baseline_roman.bin")
16
+ BERT_PATH = hf_hub_download("ai4bharat/IndicLID-BERT", filename="basline_nn_simple.pt")
17
+ print("Download complete.")
18
+
19
+ # ----------------------------
20
+ # Data helper for BERT batching
21
+ # ----------------------------
22
+ class IndicBERT_Data(Dataset):
23
+ def __init__(self, indices, X):
24
+ self.x = list(X)
25
+ self.i = list(indices)
26
+ def __len__(self):
27
+ return len(self.x)
28
+ def __getitem__(self, idx):
29
+ return self.i[idx], self.x[idx]
30
+
31
+ # ----------------------------
32
+ # IndicLID Class
33
+ # ----------------------------
34
+ class IndicLID:
35
+ def __init__(self, input_threshold=0.5, roman_lid_threshold=0.6):
36
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
37
+ self.FTN = fasttext.load_model(FTN_PATH)
38
+ self.FTR = fasttext.load_model(FTR_PATH)
39
+ self.BERT = torch.load(BERT_PATH, map_location=self.device)
40
+ self.BERT.eval()
41
+ self.tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBERTv2-MLM-only")
42
+ self.input_threshold = input_threshold
43
+ self.model_threshold = roman_lid_threshold
44
+
45
+ # Official label map
46
+ self.label_map_reverse = {
47
+ 0:'asm_Latn',1:'ben_Latn',2:'brx_Latn',3:'guj_Latn',4:'hin_Latn',
48
+ 5:'kan_Latn',6:'kas_Latn',7:'kok_Latn',8:'mai_Latn',9:'mal_Latn',
49
+ 10:'mni_Latn',11:'mar_Latn',12:'nep_Latn',13:'ori_Latn',14:'pan_Latn',
50
+ 15:'san_Latn',16:'snd_Latn',17:'tam_Latn',18:'tel_Latn',19:'urd_Latn',
51
+ 20:'eng_Latn',21:'other',22:'asm_Beng',23:'ben_Beng',24:'brx_Deva',
52
+ 25:'doi_Deva',26:'guj_Gujr',27:'hin_Deva',28:'kan_Knda',29:'kas_Arab',
53
+ 30:'kas_Deva',31:'kok_Deva',32:'mai_Deva',33:'mal_Mlym',34:'mni_Beng',
54
+ 35:'mni_Meti',36:'mar_Deva',37:'nep_Deva',38:'ori_Orya',39:'pan_Guru',
55
+ 40:'san_Deva',41:'sat_Olch',42:'snd_Arab',43:'tam_Tamil',44:'tel_Telu',
56
+ 45:'urd_Arab'
57
+ }
58
+
59
+ def char_percent_check(self, text):
60
+ total_chars = sum(c.isalpha() for c in text)
61
+ roman_chars = sum(bool(re.match(r"[A-Za-z]", c)) for c in text)
62
+ return roman_chars / total_chars if total_chars else 0
63
+
64
+ def native_inference(self, data, out_dict):
65
+ if not data: return out_dict
66
+ texts = [x[1] for x in data]
67
+ preds = self.FTN.predict(texts)
68
+ for (idx, txt), lbls, scrs in zip(data, preds[0], preds[1]):
69
+ out_dict[idx] = {"text": txt, "label": lbls[0][9:], "score": float(scrs[0]), "model": "FTN"}
70
+ return out_dict
71
+
72
+ def ftr_inference(self, data, out_dict, batch_size):
73
+ if not data: return out_dict
74
+ texts = [x[1] for x in data]
75
+ preds = self.FTR.predict(texts)
76
+ bert_inputs = []
77
+ for (idx, txt), lbls, scrs in zip(data, preds[0], preds[1]):
78
+ if float(scrs[0]) > self.model_threshold:
79
+ out_dict[idx] = {"text": txt, "label": lbls[0][9:], "score": float(scrs[0]), "model": "FTR"}
80
+ else:
81
+ bert_inputs.append((idx, txt))
82
+ return self.bert_inference(bert_inputs, out_dict, batch_size)
83
+
84
+ def bert_inference(self, data, out_dict, batch_size):
85
+ if not data: return out_dict
86
+ ds = IndicBERT_Data([x[0] for x in data], [x[1] for x in data])
87
+ dl = DataLoader(ds, batch_size=batch_size)
88
+ with torch.no_grad():
89
+ for idxs, texts in dl:
90
+ enc = self.tokenizer(list(texts), return_tensors="pt", padding=True,
91
+ truncation=True, max_length=512).to(self.device)
92
+ outputs = self.BERT(**enc)
93
+ preds = torch.argmax(outputs.logits, dim=1)
94
+ probs = torch.softmax(outputs.logits, dim=1)
95
+ for batch_i, p in enumerate(preds):
96
+ i = idxs[batch_i].item()
97
+ label_idx = p.item()
98
+ out_dict[i] = {
99
+ "text": texts[batch_i],
100
+ "label": self.label_map_reverse[label_idx],
101
+ "score": probs[batch_i, label_idx].item(),
102
+ "model": "BERT"
103
+ }
104
+ return out_dict
105
+
106
+ def batch_predict(self, texts, batch_size=8):
107
+ native, roman = [], []
108
+ for i, t in enumerate(texts):
109
+ if self.char_percent_check(t) > self.input_threshold:
110
+ roman.append((i, t))
111
+ else:
112
+ native.append((i, t))
113
+ out_dict = {}
114
+ out_dict = self.native_inference(native, out_dict)
115
+ out_dict = self.ftr_inference(roman, out_dict, batch_size)
116
+ return [out_dict[i] for i in sorted(out_dict.keys())]
117
+
118
+ # ----------------------------
119
+ # Gradio UI
120
+ # ----------------------------
121
+ lid_model = IndicLID()
122
+
123
+ def detect(text_block):
124
+ lines = [l.strip() for l in text_block.splitlines() if l.strip()]
125
+ if not lines:
126
+ return []
127
+ return lid_model.batch_predict(lines)
128
+
129
+ with gr.Blocks(title="IndicLID by AI4Bharat") as demo:
130
+ gr.Markdown("## IndicLID (AI4Bharat) — Full Ensemble\nDetects Indian languages in native & roman scripts.")
131
+ inp = gr.Textbox(lines=8, label="Enter one sentence per line")
132
+ out = gr.JSON(label="Predictions")
133
+ btn = gr.Button("Detect Language")
134
+ btn.click(fn=detect, inputs=inp, outputs=out)
135
+
136
+ if __name__ == "__main__":
137
+ demo.launch()