import os import re import gradio as gr import fasttext import torch from torch.utils.data import Dataset, DataLoader from transformers import AutoTokenizer from huggingface_hub import hf_hub_download # ---------------------------- # Download required models # ---------------------------- print("Downloading IndicLID models...") FTN_PATH = hf_hub_download("ai4bharat/IndicLID-FTN", filename="model_baseline_roman.bin") FTR_PATH = hf_hub_download("ai4bharat/IndicLID-FTR", filename="model_baseline_roman.bin") BERT_PATH = hf_hub_download("ai4bharat/IndicLID-BERT", filename="basline_nn_simple.pt") print("Download complete.") # ---------------------------- # Data helper for BERT batching # ---------------------------- class IndicBERT_Data(Dataset): def __init__(self, indices, X): self.x = list(X) self.i = list(indices) def __len__(self): return len(self.x) def __getitem__(self, idx): return self.i[idx], self.x[idx] # ---------------------------- # IndicLID Class # ---------------------------- class IndicLID: def __init__(self, input_threshold=0.5, roman_lid_threshold=0.6): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.FTN = fasttext.load_model(FTN_PATH) self.FTR = fasttext.load_model(FTR_PATH) self.BERT = torch.load(BERT_PATH, map_location=self.device) self.BERT.eval() self.tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBERTv2-MLM-only") self.input_threshold = input_threshold self.model_threshold = roman_lid_threshold # Official label map self.label_map_reverse = { 0:'asm_Latn',1:'ben_Latn',2:'brx_Latn',3:'guj_Latn',4:'hin_Latn', 5:'kan_Latn',6:'kas_Latn',7:'kok_Latn',8:'mai_Latn',9:'mal_Latn', 10:'mni_Latn',11:'mar_Latn',12:'nep_Latn',13:'ori_Latn',14:'pan_Latn', 15:'san_Latn',16:'snd_Latn',17:'tam_Latn',18:'tel_Latn',19:'urd_Latn', 20:'eng_Latn',21:'other',22:'asm_Beng',23:'ben_Beng',24:'brx_Deva', 25:'doi_Deva',26:'guj_Gujr',27:'hin_Deva',28:'kan_Knda',29:'kas_Arab', 30:'kas_Deva',31:'kok_Deva',32:'mai_Deva',33:'mal_Mlym',34:'mni_Beng', 35:'mni_Meti',36:'mar_Deva',37:'nep_Deva',38:'ori_Orya',39:'pan_Guru', 40:'san_Deva',41:'sat_Olch',42:'snd_Arab',43:'tam_Tamil',44:'tel_Telu', 45:'urd_Arab' } def char_percent_check(self, text): total_chars = sum(c.isalpha() for c in text) roman_chars = sum(bool(re.match(r"[A-Za-z]", c)) for c in text) return roman_chars / total_chars if total_chars else 0 def native_inference(self, data, out_dict): if not data: return out_dict texts = [x[1] for x in data] preds = self.FTN.predict(texts) for (idx, txt), lbls, scrs in zip(data, preds[0], preds[1]): out_dict[idx] = {"text": txt, "label": lbls[0][9:], "score": float(scrs[0]), "model": "FTN"} return out_dict def ftr_inference(self, data, out_dict, batch_size): if not data: return out_dict texts = [x[1] for x in data] preds = self.FTR.predict(texts) bert_inputs = [] for (idx, txt), lbls, scrs in zip(data, preds[0], preds[1]): if float(scrs[0]) > self.model_threshold: out_dict[idx] = {"text": txt, "label": lbls[0][9:], "score": float(scrs[0]), "model": "FTR"} else: bert_inputs.append((idx, txt)) return self.bert_inference(bert_inputs, out_dict, batch_size) def bert_inference(self, data, out_dict, batch_size): if not data: return out_dict ds = IndicBERT_Data([x[0] for x in data], [x[1] for x in data]) dl = DataLoader(ds, batch_size=batch_size) with torch.no_grad(): for idxs, texts in dl: enc = self.tokenizer(list(texts), return_tensors="pt", padding=True, truncation=True, max_length=512).to(self.device) outputs = self.BERT(**enc) preds = torch.argmax(outputs.logits, dim=1) probs = torch.softmax(outputs.logits, dim=1) for batch_i, p in enumerate(preds): i = idxs[batch_i].item() label_idx = p.item() out_dict[i] = { "text": texts[batch_i], "label": self.label_map_reverse[label_idx], "score": probs[batch_i, label_idx].item(), "model": "BERT" } return out_dict def batch_predict(self, texts, batch_size=8): native, roman = [], [] for i, t in enumerate(texts): if self.char_percent_check(t) > self.input_threshold: roman.append((i, t)) else: native.append((i, t)) out_dict = {} out_dict = self.native_inference(native, out_dict) out_dict = self.ftr_inference(roman, out_dict, batch_size) return [out_dict[i] for i in sorted(out_dict.keys())] # ---------------------------- # Gradio UI # ---------------------------- lid_model = IndicLID() def detect(text_block): lines = [l.strip() for l in text_block.splitlines() if l.strip()] if not lines: return [] return lid_model.batch_predict(lines) with gr.Blocks(title="IndicLID by AI4Bharat") as demo: gr.Markdown("## IndicLID (AI4Bharat) — Full Ensemble\nDetects Indian languages in native & roman scripts.") inp = gr.Textbox(lines=8, label="Enter one sentence per line") out = gr.JSON(label="Predictions") btn = gr.Button("Detect Language") btn.click(fn=detect, inputs=inp, outputs=out) if __name__ == "__main__": demo.launch()