Spaces:
Sleeping
Sleeping
abrakjamson
commited on
Commit
·
d8d631a
1
Parent(s):
fa4b963
zerogpu updates
Browse files- app.py +25 -14
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import torch
|
|
| 6 |
import re
|
| 7 |
import tempfile
|
| 8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
|
| 9 |
from repeng import ControlVector, ControlModel, DatasetEntry
|
| 10 |
import gradio as gr
|
| 11 |
|
|
@@ -21,19 +22,28 @@ login(access_token)
|
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(mistral_path)
|
| 22 |
tokenizer.pad_token_id = 0
|
| 23 |
|
| 24 |
-
model
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# Generation settings
|
| 39 |
# Generation settings
|
|
@@ -86,6 +96,7 @@ def construct_prompt(history, system_prompt, user_message):
|
|
| 86 |
formatted_prompt += f"{user_tag} {user_message} {asst_tag}"
|
| 87 |
return formatted_prompt
|
| 88 |
|
|
|
|
| 89 |
def generate_response(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
|
| 90 |
"""
|
| 91 |
Applies the control vectors and calls the language model.
|
|
@@ -115,7 +126,7 @@ def generate_response(system_prompt, user_message, history, max_new_tokens, repi
|
|
| 115 |
control_vectors.append(ControlVector.import_gguf(f"control_models/{cv_file}") * weight)
|
| 116 |
assistant_message_title += f"{cv_file.split('.')[0]}: {weight};"
|
| 117 |
|
| 118 |
-
|
| 119 |
# The control model takes a sum of positive and negative control vectors
|
| 120 |
model.reset()
|
| 121 |
combined_vector = None
|
|
|
|
| 6 |
import re
|
| 7 |
import tempfile
|
| 8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 9 |
+
import spaces
|
| 10 |
from repeng import ControlVector, ControlModel, DatasetEntry
|
| 11 |
import gradio as gr
|
| 12 |
|
|
|
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(mistral_path)
|
| 23 |
tokenizer.pad_token_id = 0
|
| 24 |
|
| 25 |
+
global model
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
global isModelDefined
|
| 29 |
+
isModelDefined = False
|
| 30 |
+
|
| 31 |
+
def defineModel():
|
| 32 |
+
global model
|
| 33 |
+
global isModelDefined
|
| 34 |
+
cuda = torch.cuda.is_available()
|
| 35 |
+
if not isModelDefined:
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
mistral_path,
|
| 38 |
+
torch_dtype=torch.float16,
|
| 39 |
+
trust_remote_code=True,
|
| 40 |
+
use_safetensors=True
|
| 41 |
+
)
|
| 42 |
+
print(f"Is CUDA available: {cuda}")
|
| 43 |
+
model = model.to("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 44 |
+
# these are good magic numbers for this model
|
| 45 |
+
model = ControlModel(model, list(range(-5, -18, -1)))
|
| 46 |
+
isModelDefined = True
|
| 47 |
|
| 48 |
# Generation settings
|
| 49 |
# Generation settings
|
|
|
|
| 96 |
formatted_prompt += f"{user_tag} {user_message} {asst_tag}"
|
| 97 |
return formatted_prompt
|
| 98 |
|
| 99 |
+
@spaces.GPU
|
| 100 |
def generate_response(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
|
| 101 |
"""
|
| 102 |
Applies the control vectors and calls the language model.
|
|
|
|
| 126 |
control_vectors.append(ControlVector.import_gguf(f"control_models/{cv_file}") * weight)
|
| 127 |
assistant_message_title += f"{cv_file.split('.')[0]}: {weight};"
|
| 128 |
|
| 129 |
+
defineModel()
|
| 130 |
# The control model takes a sum of positive and negative control vectors
|
| 131 |
model.reset()
|
| 132 |
combined_vector = None
|
requirements.txt
CHANGED
|
@@ -93,4 +93,5 @@ tzdata==2024.2
|
|
| 93 |
urllib3==2.2.3
|
| 94 |
uvicorn==0.30.6
|
| 95 |
websockets==12.0
|
| 96 |
-
xformers==0.0.27.post2
|
|
|
|
|
|
| 93 |
urllib3==2.2.3
|
| 94 |
uvicorn==0.30.6
|
| 95 |
websockets==12.0
|
| 96 |
+
xformers==0.0.27.post2
|
| 97 |
+
spaces
|