Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
| 3 |
from transformers import pipeline
|
| 4 |
-
import logging
|
| 5 |
-
|
| 6 |
-
# Configure logging
|
| 7 |
-
logging.basicConfig(level=logging.INFO)
|
| 8 |
-
logger = logging.getLogger(__name__)
|
| 9 |
|
| 10 |
# Cache the AI models to avoid reloading them on every interaction
|
| 11 |
@st.cache_resource
|
|
@@ -13,7 +8,6 @@ def load_qa_model():
|
|
| 13 |
try:
|
| 14 |
return pipeline("question-answering", model="distilbert-base-cased-distilled-squad", framework="pt")
|
| 15 |
except Exception as e:
|
| 16 |
-
logger.error(f"Error loading QA model: {e}")
|
| 17 |
st.error(f"Error loading QA model: {e}")
|
| 18 |
return None
|
| 19 |
|
|
@@ -22,7 +16,6 @@ def load_text_generation_model():
|
|
| 22 |
try:
|
| 23 |
return pipeline("text-generation", model="gpt2", framework="pt")
|
| 24 |
except Exception as e:
|
| 25 |
-
logger.error(f"Error loading text generation model: {e}")
|
| 26 |
st.error(f"Error loading text generation model: {e}")
|
| 27 |
return None
|
| 28 |
|
|
@@ -39,25 +32,22 @@ def fetch_plant_data(plant_name):
|
|
| 39 |
response.raise_for_status() # Raise an error for bad status codes
|
| 40 |
data = response.json()
|
| 41 |
if data.get("data"):
|
| 42 |
-
#
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
for plant in data["data"]
|
| 55 |
-
]
|
| 56 |
else:
|
| 57 |
st.warning(f"No data found for the plant: {plant_name}")
|
| 58 |
return None
|
| 59 |
except requests.exceptions.RequestException as e:
|
| 60 |
-
logger.error(f"Error fetching plant data: {e}")
|
| 61 |
st.error(f"Error fetching plant data: {e}")
|
| 62 |
return None
|
| 63 |
|
|
@@ -66,14 +56,12 @@ def refine_watering_instructions(plant_name, basic_instructions=None):
|
|
| 66 |
prompt = (
|
| 67 |
f"Provide detailed watering instructions for the plant '{plant_name}'. "
|
| 68 |
f"Base your response on the following basic instructions: '{basic_instructions}'. "
|
| 69 |
-
"Include information on how often to water, the amount of water needed, and any seasonal variations.
|
| 70 |
-
"Also, mention signs of overwatering or underwatering."
|
| 71 |
)
|
| 72 |
try:
|
| 73 |
-
result = text_generation_pipeline(prompt, max_length=
|
| 74 |
return result[0]["generated_text"]
|
| 75 |
except Exception as e:
|
| 76 |
-
logger.error(f"Error generating watering instructions: {e}")
|
| 77 |
st.error(f"Error generating watering instructions: {e}")
|
| 78 |
return "Unable to generate watering instructions at this time."
|
| 79 |
|
|
@@ -91,11 +79,6 @@ def is_valid_image_url(url):
|
|
| 91 |
def main():
|
| 92 |
st.title("🌱 AI-Powered Plant Care Guide")
|
| 93 |
|
| 94 |
-
# Sidebar for additional options
|
| 95 |
-
with st.sidebar:
|
| 96 |
-
st.header("Options")
|
| 97 |
-
st.write("Here you can add additional settings or features in the future.")
|
| 98 |
-
|
| 99 |
# Section 1: Search for plant care information
|
| 100 |
st.header("Search for Plant Care Information")
|
| 101 |
user_input = st.text_input("Enter the name of a plant", "")
|
|
@@ -103,50 +86,28 @@ def main():
|
|
| 103 |
if st.button("Search"):
|
| 104 |
if user_input.strip():
|
| 105 |
with st.spinner("Fetching plant data..."):
|
| 106 |
-
|
| 107 |
|
| 108 |
-
if
|
| 109 |
-
st.success(f"Found
|
| 110 |
|
| 111 |
-
# Let the user choose the correct plant if there are multiple results
|
| 112 |
-
if len(plant_data) > 1:
|
| 113 |
-
selected_plant = st.selectbox(
|
| 114 |
-
"Multiple plants found. Select the correct one:",
|
| 115 |
-
options=[plant["name"] for plant in plant_data],
|
| 116 |
-
index=0,
|
| 117 |
-
)
|
| 118 |
-
plant_info = next(plant for plant in plant_data if plant["name"] == selected_plant)
|
| 119 |
-
else:
|
| 120 |
-
plant_info = plant_data[0]
|
| 121 |
-
|
| 122 |
# Refine or generate AI-based watering instructions
|
| 123 |
with st.spinner("Generating detailed watering instructions..."):
|
| 124 |
-
plant_info["watering"] = refine_watering_instructions(
|
| 125 |
|
| 126 |
-
# Display plant information
|
| 127 |
st.subheader(f"Care Instructions for {plant_info['name']}")
|
| 128 |
-
st.
|
| 129 |
-
st.
|
| 130 |
-
st.
|
| 131 |
-
st.
|
| 132 |
-
st.
|
| 133 |
-
|
| 134 |
-
# Expandable section for watering instructions
|
| 135 |
-
with st.expander("View Detailed Watering Instructions"):
|
| 136 |
-
st.markdown(f"{plant_info['watering']}")
|
| 137 |
|
| 138 |
-
#
|
| 139 |
-
st.write("Was this information helpful?")
|
| 140 |
-
feedback = st.radio("Feedback", ["Yes", "No"], index=None)
|
| 141 |
-
if feedback:
|
| 142 |
-
st.write(f"Thank you for your feedback! You selected: {feedback}")
|
| 143 |
-
|
| 144 |
-
# Display the image if the URL is valid, otherwise use a placeholder
|
| 145 |
if plant_info["image_url"] and is_valid_image_url(plant_info["image_url"]):
|
| 146 |
st.image(plant_info["image_url"], caption=plant_info["name"], width=300)
|
| 147 |
else:
|
| 148 |
st.warning("No valid image available for this plant.")
|
| 149 |
-
st.image("https://via.placeholder.com/300x200.png?text=No+Image+Available", caption="Placeholder Image", width=300)
|
| 150 |
else:
|
| 151 |
st.warning("No information found for the specified plant. Please try another name.")
|
| 152 |
else:
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
| 3 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Cache the AI models to avoid reloading them on every interaction
|
| 6 |
@st.cache_resource
|
|
|
|
| 8 |
try:
|
| 9 |
return pipeline("question-answering", model="distilbert-base-cased-distilled-squad", framework="pt")
|
| 10 |
except Exception as e:
|
|
|
|
| 11 |
st.error(f"Error loading QA model: {e}")
|
| 12 |
return None
|
| 13 |
|
|
|
|
| 16 |
try:
|
| 17 |
return pipeline("text-generation", model="gpt2", framework="pt")
|
| 18 |
except Exception as e:
|
|
|
|
| 19 |
st.error(f"Error loading text generation model: {e}")
|
| 20 |
return None
|
| 21 |
|
|
|
|
| 32 |
response.raise_for_status() # Raise an error for bad status codes
|
| 33 |
data = response.json()
|
| 34 |
if data.get("data"):
|
| 35 |
+
# Get the first result (most likely match)
|
| 36 |
+
plant_info = data["data"][0]["attributes"]
|
| 37 |
+
return {
|
| 38 |
+
"name": plant_info.get("name", plant_name),
|
| 39 |
+
"description": plant_info.get("description", "No description available."),
|
| 40 |
+
"image_url": plant_info.get("main_image_path", None),
|
| 41 |
+
"sun_requirements": plant_info.get("sun_requirements", "No information available."),
|
| 42 |
+
"watering": plant_info.get("watering", "No specific instructions available."),
|
| 43 |
+
"growth_rate": plant_info.get("growth_rate", "No information available."),
|
| 44 |
+
"spacing": plant_info.get("spacing", "No information available."),
|
| 45 |
+
"sowing_method": plant_info.get("sowing_method", "No information available."),
|
| 46 |
+
}
|
|
|
|
|
|
|
| 47 |
else:
|
| 48 |
st.warning(f"No data found for the plant: {plant_name}")
|
| 49 |
return None
|
| 50 |
except requests.exceptions.RequestException as e:
|
|
|
|
| 51 |
st.error(f"Error fetching plant data: {e}")
|
| 52 |
return None
|
| 53 |
|
|
|
|
| 56 |
prompt = (
|
| 57 |
f"Provide detailed watering instructions for the plant '{plant_name}'. "
|
| 58 |
f"Base your response on the following basic instructions: '{basic_instructions}'. "
|
| 59 |
+
"Include information on how often to water, the amount of water needed, and any seasonal variations."
|
|
|
|
| 60 |
)
|
| 61 |
try:
|
| 62 |
+
result = text_generation_pipeline(prompt, max_length=200, num_return_sequences=1)
|
| 63 |
return result[0]["generated_text"]
|
| 64 |
except Exception as e:
|
|
|
|
| 65 |
st.error(f"Error generating watering instructions: {e}")
|
| 66 |
return "Unable to generate watering instructions at this time."
|
| 67 |
|
|
|
|
| 79 |
def main():
|
| 80 |
st.title("🌱 AI-Powered Plant Care Guide")
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
# Section 1: Search for plant care information
|
| 83 |
st.header("Search for Plant Care Information")
|
| 84 |
user_input = st.text_input("Enter the name of a plant", "")
|
|
|
|
| 86 |
if st.button("Search"):
|
| 87 |
if user_input.strip():
|
| 88 |
with st.spinner("Fetching plant data..."):
|
| 89 |
+
plant_info = fetch_plant_data(user_input)
|
| 90 |
|
| 91 |
+
if plant_info:
|
| 92 |
+
st.success(f"Found information for {plant_info['name']}!")
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
# Refine or generate AI-based watering instructions
|
| 95 |
with st.spinner("Generating detailed watering instructions..."):
|
| 96 |
+
plant_info["watering"] = refine_watering_instructions(user_input, basic_instructions=plant_info["watering"])
|
| 97 |
|
|
|
|
| 98 |
st.subheader(f"Care Instructions for {plant_info['name']}")
|
| 99 |
+
st.write(f"**Description:** {plant_info['description']}")
|
| 100 |
+
st.write(f"**Sun Requirements:** {plant_info['sun_requirements']}")
|
| 101 |
+
st.write(f"**Growth Rate:** {plant_info['growth_rate']}")
|
| 102 |
+
st.write(f"**Spacing:** {plant_info['spacing']}")
|
| 103 |
+
st.write(f"**Sowing Method:** {plant_info['sowing_method']}")
|
| 104 |
+
st.write(f"**Watering Instructions:** {plant_info['watering']}")
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
# Display the image if the URL is valid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
if plant_info["image_url"] and is_valid_image_url(plant_info["image_url"]):
|
| 108 |
st.image(plant_info["image_url"], caption=plant_info["name"], width=300)
|
| 109 |
else:
|
| 110 |
st.warning("No valid image available for this plant.")
|
|
|
|
| 111 |
else:
|
| 112 |
st.warning("No information found for the specified plant. Please try another name.")
|
| 113 |
else:
|