Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import plotly.graph_objs as go
|
| 3 |
-
import plotly.express as px
|
| 4 |
-
import pandas as pd
|
| 5 |
import json
|
| 6 |
|
| 7 |
-
#
|
| 8 |
MODEL_EVALS = {
|
| 9 |
"Proteins": {
|
| 10 |
"Nexa Bio1 (Secondary)": 0.71,
|
|
@@ -33,310 +31,141 @@ MODEL_EVALS = {
|
|
| 33 |
"Nexa CFD Model": 0.92,
|
| 34 |
"FlowNet": 0.89,
|
| 35 |
},
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
},
|
| 50 |
-
"
|
| 51 |
-
"
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
}
|
| 59 |
}
|
| 60 |
}
|
| 61 |
|
| 62 |
-
def
|
| 63 |
-
|
| 64 |
-
models = list(MODEL_EVALS[domain].keys())
|
| 65 |
-
scores = list(MODEL_EVALS[domain].values())
|
| 66 |
-
|
| 67 |
-
# Color coding for Nexa models vs others
|
| 68 |
-
colors = ['#FF6B35' if 'Nexa' in model else '#4A90E2' for model in models]
|
| 69 |
-
|
| 70 |
-
fig = go.Figure()
|
| 71 |
-
fig.add_trace(go.Bar(
|
| 72 |
-
y=models,
|
| 73 |
-
x=scores,
|
| 74 |
-
orientation='h',
|
| 75 |
-
marker_color=colors,
|
| 76 |
-
text=[f'{score:.3f}' for score in scores],
|
| 77 |
-
textposition='auto'
|
| 78 |
-
))
|
| 79 |
-
|
| 80 |
-
fig.update_layout(
|
| 81 |
-
title=f"Model Benchmark Scores — {domain}",
|
| 82 |
-
yaxis_title="Model",
|
| 83 |
-
xaxis_title="Score",
|
| 84 |
-
xaxis_range=[0, 1.0],
|
| 85 |
-
template="plotly_white",
|
| 86 |
-
height=500,
|
| 87 |
-
showlegend=False
|
| 88 |
-
)
|
| 89 |
-
return fig
|
| 90 |
|
| 91 |
-
def plot_scieval_comparison(model_name):
|
| 92 |
-
"""Create horizontal comparison chart for SCIEVAL metrics"""
|
| 93 |
-
if model_name not in SCIEVAL_METRICS:
|
| 94 |
-
return go.Figure()
|
| 95 |
-
|
| 96 |
-
metrics = list(SCIEVAL_METRICS[model_name]["OSIR (General)"].keys())
|
| 97 |
-
osir_scores = list(SCIEVAL_METRICS[model_name]["OSIR (General)"].values())
|
| 98 |
-
field_scores = list(SCIEVAL_METRICS[model_name]["OSIR-Field (Physics)"].values())
|
| 99 |
-
|
| 100 |
fig = go.Figure()
|
| 101 |
-
|
| 102 |
-
fig.add_trace(go.Bar(
|
| 103 |
-
name='OSIR (General)',
|
| 104 |
-
y=metrics,
|
| 105 |
-
x=osir_scores,
|
| 106 |
-
orientation='h',
|
| 107 |
-
marker_color='#FFD700',
|
| 108 |
-
text=[f'{score:.1f}' for score in osir_scores],
|
| 109 |
-
textposition='auto'
|
| 110 |
-
))
|
| 111 |
-
|
| 112 |
-
fig.add_trace(go.Bar(
|
| 113 |
-
name='OSIR-Field (Physics)',
|
| 114 |
-
y=metrics,
|
| 115 |
-
x=field_scores,
|
| 116 |
-
orientation='h',
|
| 117 |
-
marker_color='#FF6B35',
|
| 118 |
-
text=[f'{score:.1f}' for score in field_scores],
|
| 119 |
-
textposition='auto'
|
| 120 |
-
))
|
| 121 |
-
|
| 122 |
-
fig.update_layout(
|
| 123 |
-
title=f"SCIEVAL Metrics Comparison — {model_name}",
|
| 124 |
-
yaxis_title="Metric",
|
| 125 |
-
xaxis_title="Score (1-10)",
|
| 126 |
-
xaxis_range=[0, 10],
|
| 127 |
-
template="plotly_white",
|
| 128 |
-
height=500,
|
| 129 |
-
barmode='group'
|
| 130 |
-
)
|
| 131 |
-
return fig
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
"
|
| 142 |
-
|
| 143 |
-
"
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
"Best Model": model,
|
| 155 |
-
"Score": f"{avg_osir:.2f}",
|
| 156 |
-
"Metric Type": "SCIEVAL"
|
| 157 |
-
})
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
def get_model_details(domain):
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
def
|
| 174 |
-
|
| 175 |
-
plot = plot_domain_benchmark(domain)
|
| 176 |
details = get_model_details(domain)
|
| 177 |
return plot, details
|
| 178 |
|
| 179 |
-
|
| 180 |
-
"""Display SCIEVAL results"""
|
| 181 |
-
plot = plot_scieval_comparison(model_name)
|
| 182 |
-
if model_name in SCIEVAL_METRICS:
|
| 183 |
-
details = json.dumps(SCIEVAL_METRICS[model_name], indent=2)
|
| 184 |
-
else:
|
| 185 |
-
details = "Model not found in SCIEVAL database"
|
| 186 |
-
return plot, details
|
| 187 |
|
| 188 |
-
|
| 189 |
-
with gr.Blocks(title="Scientific ML Benchmark Suite", theme=gr.themes.Soft()) as demo:
|
| 190 |
gr.Markdown("""
|
| 191 |
-
# 🔬
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
This suite combines domain-specific benchmarks with SCIEVAL (Scientific Evaluation) metrics to provide
|
| 195 |
-
comprehensive assessment of ML models across scientific disciplines.
|
| 196 |
""")
|
| 197 |
-
|
| 198 |
-
with gr.Tabs():
|
| 199 |
-
# Domain Benchmarks Tab
|
| 200 |
-
with gr.TabItem("🧪 Domain Benchmarks"):
|
| 201 |
-
gr.Markdown("""
|
| 202 |
-
### Domain-Specific Model Evaluations
|
| 203 |
-
Compare models across scientific domains including Proteins, Astronomy, Materials Science,
|
| 204 |
-
Quantum State Tomography (QST), High Energy Physics (HEP), and Computational Fluid Dynamics (CFD).
|
| 205 |
-
""")
|
| 206 |
-
|
| 207 |
-
with gr.Row():
|
| 208 |
-
domain_dropdown = gr.Dropdown(
|
| 209 |
-
choices=list(MODEL_EVALS.keys()),
|
| 210 |
-
label="Select Scientific Domain",
|
| 211 |
-
value="Proteins"
|
| 212 |
-
)
|
| 213 |
-
domain_btn = gr.Button("Run Domain Evaluation", variant="primary")
|
| 214 |
-
|
| 215 |
-
with gr.Row():
|
| 216 |
-
domain_plot = gr.Plot(label="Domain Benchmark Results")
|
| 217 |
-
domain_metrics = gr.Code(label="Raw Scores (JSON)", language="json")
|
| 218 |
-
|
| 219 |
-
domain_btn.click(
|
| 220 |
-
display_domain_eval,
|
| 221 |
-
inputs=domain_dropdown,
|
| 222 |
-
outputs=[domain_plot, domain_metrics]
|
| 223 |
-
)
|
| 224 |
-
|
| 225 |
-
# SCIEVAL Tab
|
| 226 |
-
with gr.TabItem("📊 SCIEVAL Metrics"):
|
| 227 |
-
gr.Markdown("""
|
| 228 |
-
### SCIEVAL: Scientific Reasoning Evaluation
|
| 229 |
-
Assess models on scientific reasoning capabilities using the OSIR (Open Scientific Intelligence & Reasoning) framework.
|
| 230 |
-
|
| 231 |
-
**Metrics evaluated:**
|
| 232 |
-
- **Entropy/Novelty**: Originality and information richness
|
| 233 |
-
- **Internal Consistency**: Logical structure and argument continuity
|
| 234 |
-
- **Hypothesis Framing**: Research aim clarity
|
| 235 |
-
- **Thematic Grounding**: Domain focus and relevance
|
| 236 |
-
- **Citation & Structure**: Scientific formatting
|
| 237 |
-
- **Symbolism & Math Logic**: Mathematical rigor
|
| 238 |
-
- **Scientific Utility**: Real-world research value
|
| 239 |
-
""")
|
| 240 |
-
|
| 241 |
-
with gr.Row():
|
| 242 |
-
scieval_dropdown = gr.Dropdown(
|
| 243 |
-
choices=list(SCIEVAL_METRICS.keys()),
|
| 244 |
-
label="Select Model for SCIEVAL",
|
| 245 |
-
value="Nexa Mistral Sci-7B"
|
| 246 |
-
)
|
| 247 |
-
scieval_btn = gr.Button("Run SCIEVAL Analysis", variant="primary")
|
| 248 |
-
|
| 249 |
-
with gr.Row():
|
| 250 |
-
scieval_plot = gr.Plot(label="SCIEVAL Metrics Comparison")
|
| 251 |
-
scieval_metrics = gr.Code(label="Detailed Scores (JSON)", language="json")
|
| 252 |
-
|
| 253 |
-
scieval_btn.click(
|
| 254 |
-
display_scieval,
|
| 255 |
-
inputs=scieval_dropdown,
|
| 256 |
-
outputs=[scieval_plot, scieval_metrics]
|
| 257 |
-
)
|
| 258 |
-
|
| 259 |
-
# Leaderboard Tab
|
| 260 |
-
with gr.TabItem("🏆 Leaderboard"):
|
| 261 |
-
gr.Markdown("""
|
| 262 |
-
### Scientific ML Model Leaderboard
|
| 263 |
-
Current best-performing models across all evaluated domains and metrics.
|
| 264 |
-
""")
|
| 265 |
-
|
| 266 |
-
leaderboard_df = create_leaderboard()
|
| 267 |
-
leaderboard_table = gr.Dataframe(
|
| 268 |
-
value=leaderboard_df,
|
| 269 |
-
label="Current Leaders by Domain",
|
| 270 |
-
interactive=False
|
| 271 |
-
)
|
| 272 |
-
|
| 273 |
-
# About Tab
|
| 274 |
-
with gr.TabItem("ℹ️ About"):
|
| 275 |
-
gr.Markdown("""
|
| 276 |
-
### About the Scientific ML Benchmark Suite
|
| 277 |
-
|
| 278 |
-
This comprehensive evaluation framework combines two powerful assessment methodologies:
|
| 279 |
|
| 280 |
-
|
|
|
|
|
|
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
- **QST**: Quantum state tomography reconstruction
|
| 288 |
-
- **HEP**: High energy physics event classification
|
| 289 |
-
- **CFD**: Computational fluid dynamics modeling
|
| 290 |
-
|
| 291 |
-
#### 🔬 SCIEVAL Framework
|
| 292 |
-
SCIEVAL is part of the OSIR (Open Scientific Intelligence & Reasoning) initiative, providing:
|
| 293 |
-
|
| 294 |
-
- **Standardized Evaluation**: Reproducible metrics for scientific LLMs
|
| 295 |
-
- **Domain Adaptation**: Field-specific evaluation extensions
|
| 296 |
-
- **Research Utility**: Assessment of real-world scientific value
|
| 297 |
-
|
| 298 |
-
**OSIR-Field Extensions:**
|
| 299 |
-
- `osir-field-physics`: Physics-specific reasoning evaluation
|
| 300 |
-
- `osir-field-bio`: Biological sciences assessment
|
| 301 |
-
- `osir-field-chem`: Chemistry domain evaluation
|
| 302 |
-
- `osir-field-cs`: Computer science applications
|
| 303 |
-
|
| 304 |
-
#### 📈 Scoring System
|
| 305 |
-
- **Domain Benchmarks**: 0.0 - 1.0 scale (higher is better)
|
| 306 |
-
- **SCIEVAL Metrics**: 1 - 10 scale across seven dimensions
|
| 307 |
-
|
| 308 |
-
#### 🤝 Contributing
|
| 309 |
-
This is an open framework welcoming contributions:
|
| 310 |
-
- New domain-specific test sets
|
| 311 |
-
- Additional evaluation metrics
|
| 312 |
-
- Model submissions for benchmarking
|
| 313 |
-
|
| 314 |
-
#### 📄 Citation
|
| 315 |
-
```
|
| 316 |
-
@misc{scieval2024,
|
| 317 |
-
title={SCIEVAL: A Benchmark for Evaluating Scientific Reasoning in Language Models},
|
| 318 |
-
author={NEXA Research},
|
| 319 |
-
year={2025},
|
| 320 |
-
url={https://huggingface.co/spaces/osir/scieval}
|
| 321 |
-
}
|
| 322 |
-
```
|
| 323 |
-
|
| 324 |
-
---
|
| 325 |
-
|
| 326 |
-
**License**: Apache 2.0 | **Framework**: OSIR Initiative | **Platform**: Gradio + Plotly
|
| 327 |
-
""")
|
| 328 |
-
|
| 329 |
-
# Initialize with default values
|
| 330 |
-
demo.load(
|
| 331 |
-
lambda: (plot_domain_benchmark("Proteins"), get_model_details("Proteins")),
|
| 332 |
-
outputs=[domain_plot, domain_metrics]
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
demo.load(
|
| 336 |
-
lambda: (plot_scieval_comparison("Nexa Mistral Sci-7B"),
|
| 337 |
-
json.dumps(SCIEVAL_METRICS["Nexa Mistral Sci-7B"], indent=2)),
|
| 338 |
-
outputs=[scieval_plot, scieval_metrics]
|
| 339 |
-
)
|
| 340 |
|
| 341 |
-
|
| 342 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import plotly.graph_objs as go
|
|
|
|
|
|
|
| 3 |
import json
|
| 4 |
|
| 5 |
+
# Expanded MODEL_EVALS including LLM benchmarks with nested JSON scores
|
| 6 |
MODEL_EVALS = {
|
| 7 |
"Proteins": {
|
| 8 |
"Nexa Bio1 (Secondary)": 0.71,
|
|
|
|
| 31 |
"Nexa CFD Model": 0.92,
|
| 32 |
"FlowNet": 0.89,
|
| 33 |
},
|
| 34 |
+
# Added LLM domain with nested OSIR benchmark scores
|
| 35 |
+
"LLM": {
|
| 36 |
+
"Nexa Mistral": {
|
| 37 |
+
"OSIR (General)": {
|
| 38 |
+
"Entropy / Novelty": 6.7,
|
| 39 |
+
"Internal Consistency": 7.8,
|
| 40 |
+
"Hypothesis Framing": 7.5,
|
| 41 |
+
"Thematic Grounding": 7.9,
|
| 42 |
+
"Citation & Structure": 6.5,
|
| 43 |
+
"Symbolism & Math Logic": 5.9,
|
| 44 |
+
"Scientific Utility": 7.0
|
| 45 |
+
},
|
| 46 |
+
"OSIR-Field (Physics)": {
|
| 47 |
+
"Entropy / Novelty": 7.0,
|
| 48 |
+
"Internal Consistency": 8.0,
|
| 49 |
+
"Hypothesis Framing": 7.8,
|
| 50 |
+
"Thematic Grounding": 8.1,
|
| 51 |
+
"Citation & Structure": 6.2,
|
| 52 |
+
"Symbolism & Math Logic": 6.5,
|
| 53 |
+
"Scientific Utility": 7.4
|
| 54 |
+
}
|
| 55 |
},
|
| 56 |
+
"nexa-Llama-sci7b": {
|
| 57 |
+
"OSIR (General)": {
|
| 58 |
+
"Entropy / Novelty": 6.2,
|
| 59 |
+
"Internal Consistency": 8.5,
|
| 60 |
+
"Hypothesis Framing": 6.8,
|
| 61 |
+
"Thematic Grounding": 7.9,
|
| 62 |
+
"Citation & Structure": 7.3,
|
| 63 |
+
"Symbolism & Math Logic": 6.1,
|
| 64 |
+
"Scientific Utility": 7.6
|
| 65 |
+
},
|
| 66 |
+
"OSIR-Field (Physics)": {
|
| 67 |
+
"Entropy / Novelty": 7.1,
|
| 68 |
+
"Internal Consistency": 8.9,
|
| 69 |
+
"Hypothesis Framing": 7.4,
|
| 70 |
+
"Thematic Grounding": 8.2,
|
| 71 |
+
"Citation & Structure": 6.5,
|
| 72 |
+
"Symbolism & Math Logic": 7.8,
|
| 73 |
+
"Scientific Utility": 8.3
|
| 74 |
+
}
|
| 75 |
}
|
| 76 |
}
|
| 77 |
}
|
| 78 |
|
| 79 |
+
def plot_domain(domain):
|
| 80 |
+
data = MODEL_EVALS[domain]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
fig = go.Figure()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
if domain != "LLM":
|
| 85 |
+
# Simple bar plot for normal domains
|
| 86 |
+
models = list(data.keys())
|
| 87 |
+
scores = list(data.values())
|
| 88 |
+
fig.add_trace(go.Bar(x=models, y=scores, marker_color='indigo'))
|
| 89 |
+
fig.update_layout(
|
| 90 |
+
title=f"Model Benchmark Scores — {domain}",
|
| 91 |
+
xaxis_title="Model",
|
| 92 |
+
yaxis_title="Score",
|
| 93 |
+
yaxis_range=[0, 1.0],
|
| 94 |
+
template="plotly_white",
|
| 95 |
+
height=500
|
| 96 |
+
)
|
| 97 |
+
else:
|
| 98 |
+
# For LLM domain, plot grouped bars for each model and metric category
|
| 99 |
+
categories = ["Entropy / Novelty", "Internal Consistency", "Hypothesis Framing",
|
| 100 |
+
"Thematic Grounding", "Citation & Structure", "Symbolism & Math Logic", "Scientific Utility"]
|
| 101 |
+
benchmarks = ["OSIR (General)", "OSIR-Field (Physics)"]
|
| 102 |
+
|
| 103 |
+
x_labels = []
|
| 104 |
+
bar_data = {model: [] for model in data.keys()}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
# Construct x-axis labels combining benchmark and category
|
| 107 |
+
for bench in benchmarks:
|
| 108 |
+
for cat in categories:
|
| 109 |
+
x_labels.append(f"{bench}\n{cat}")
|
| 110 |
+
|
| 111 |
+
# Collect scores for each model in order of x_labels
|
| 112 |
+
for model, bench_data in data.items():
|
| 113 |
+
scores = []
|
| 114 |
+
for bench in benchmarks:
|
| 115 |
+
for cat in categories:
|
| 116 |
+
scores.append(bench_data[bench][cat])
|
| 117 |
+
bar_data[model] = scores
|
| 118 |
+
|
| 119 |
+
# Add bars for each model
|
| 120 |
+
colors = ['indigo', 'darkorange']
|
| 121 |
+
for i, (model, scores) in enumerate(bar_data.items()):
|
| 122 |
+
fig.add_trace(go.Bar(
|
| 123 |
+
x=x_labels,
|
| 124 |
+
y=scores,
|
| 125 |
+
name=model,
|
| 126 |
+
marker_color=colors[i % len(colors)]
|
| 127 |
+
))
|
| 128 |
+
|
| 129 |
+
fig.update_layout(
|
| 130 |
+
barmode='group',
|
| 131 |
+
title="LLM Model Benchmark Scores (OSIR Metrics)",
|
| 132 |
+
xaxis_title="Metric Category",
|
| 133 |
+
yaxis_title="Score",
|
| 134 |
+
yaxis_range=[0, 10],
|
| 135 |
+
template="plotly_white",
|
| 136 |
+
height=600
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
return fig
|
| 140 |
|
| 141 |
def get_model_details(domain):
|
| 142 |
+
# For LLM domain, pretty-print nested JSON; otherwise, simple JSON
|
| 143 |
+
if domain != "LLM":
|
| 144 |
+
return json.dumps(MODEL_EVALS[domain], indent=2)
|
| 145 |
+
else:
|
| 146 |
+
return json.dumps(MODEL_EVALS[domain], indent=2)
|
| 147 |
|
| 148 |
+
def display_eval(domain):
|
| 149 |
+
plot = plot_domain(domain)
|
|
|
|
| 150 |
details = get_model_details(domain)
|
| 151 |
return plot, details
|
| 152 |
|
| 153 |
+
domain_list = list(MODEL_EVALS.keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
with gr.Blocks(title="Nexa Evals — Scientific ML Benchmark Suite") as demo:
|
|
|
|
| 156 |
gr.Markdown("""
|
| 157 |
+
# 🔬 Nexa Evals
|
| 158 |
+
A benchmarking suite comparing Nexa models against SOTA across scientific domains.
|
|
|
|
|
|
|
|
|
|
| 159 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
with gr.Row():
|
| 162 |
+
domain = gr.Dropdown(domain_list, label="Select Domain")
|
| 163 |
+
show_btn = gr.Button("Run Evaluation")
|
| 164 |
|
| 165 |
+
with gr.Row():
|
| 166 |
+
plot_output = gr.Plot(label="Benchmark Plot")
|
| 167 |
+
metrics_output = gr.Code(label="Raw Scores (JSON)", language="json")
|
| 168 |
+
|
| 169 |
+
show_btn.click(display_eval, inputs=domain, outputs=[plot_output, metrics_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
demo.launch()
|
|
|