Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -176,102 +176,105 @@ class TextClassifier:
|
|
| 176 |
'num_windows': len(predictions)
|
| 177 |
}
|
| 178 |
|
| 179 |
-
def detailed_scan(self, text: str) -> Dict:
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
|
| 273 |
def detailed_scan(self, text: str) -> Dict:
|
| 274 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
|
|
|
|
|
|
|
|
|
| 275 |
if not text.strip():
|
| 276 |
return {
|
| 277 |
'sentence_predictions': [],
|
|
|
|
| 176 |
'num_windows': len(predictions)
|
| 177 |
}
|
| 178 |
|
| 179 |
+
# def detailed_scan(self, text: str) -> Dict:
|
| 180 |
+
# """Original prediction method with modified window handling"""
|
| 181 |
+
# if self.model is None or self.tokenizer is None:
|
| 182 |
+
# self.load_model()
|
| 183 |
+
|
| 184 |
+
# self.model.eval()
|
| 185 |
+
# sentences = self.processor.split_into_sentences(text)
|
| 186 |
+
# if not sentences:
|
| 187 |
+
# return {}
|
| 188 |
+
|
| 189 |
+
# # Create centered windows for each sentence
|
| 190 |
+
# windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 191 |
+
|
| 192 |
+
# # Track scores for each sentence
|
| 193 |
+
# sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 194 |
+
# sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 195 |
+
|
| 196 |
+
# # Process windows in batches
|
| 197 |
+
# batch_size = 16
|
| 198 |
+
# for i in range(0, len(windows), batch_size):
|
| 199 |
+
# batch_windows = windows[i:i + batch_size]
|
| 200 |
+
# batch_indices = window_sentence_indices[i:i + batch_size]
|
| 201 |
+
|
| 202 |
+
# inputs = self.tokenizer(
|
| 203 |
+
# batch_windows,
|
| 204 |
+
# truncation=True,
|
| 205 |
+
# padding=True,
|
| 206 |
+
# max_length=MAX_LENGTH,
|
| 207 |
+
# return_tensors="pt"
|
| 208 |
+
# ).to(self.device)
|
| 209 |
+
|
| 210 |
+
# with torch.no_grad():
|
| 211 |
+
# outputs = self.model(**inputs)
|
| 212 |
+
# probs = F.softmax(outputs.logits, dim=-1)
|
| 213 |
+
|
| 214 |
+
# # Attribute predictions more carefully
|
| 215 |
+
# for window_idx, indices in enumerate(batch_indices):
|
| 216 |
+
# center_idx = len(indices) // 2
|
| 217 |
+
# center_weight = 0.7 # Higher weight for center sentence
|
| 218 |
+
# edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
| 219 |
+
|
| 220 |
+
# for pos, sent_idx in enumerate(indices):
|
| 221 |
+
# # Apply higher weight to center sentence
|
| 222 |
+
# weight = center_weight if pos == center_idx else edge_weight
|
| 223 |
+
# sentence_appearances[sent_idx] += weight
|
| 224 |
+
# sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 225 |
+
# sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 226 |
+
|
| 227 |
+
# del inputs, outputs, probs
|
| 228 |
+
# if torch.cuda.is_available():
|
| 229 |
+
# torch.cuda.empty_cache()
|
| 230 |
+
|
| 231 |
+
# # Calculate final predictions
|
| 232 |
+
# sentence_predictions = []
|
| 233 |
+
# for i in range(len(sentences)):
|
| 234 |
+
# if sentence_appearances[i] > 0:
|
| 235 |
+
# human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 236 |
+
# ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 237 |
+
|
| 238 |
+
# # Only apply minimal smoothing at prediction boundaries
|
| 239 |
+
# if i > 0 and i < len(sentences) - 1:
|
| 240 |
+
# prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 241 |
+
# prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 242 |
+
# next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 243 |
+
# next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 244 |
+
|
| 245 |
+
# # Check if we're at a prediction boundary
|
| 246 |
+
# current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 247 |
+
# prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 248 |
+
# next_pred = 'human' if next_human > next_ai else 'ai'
|
| 249 |
+
|
| 250 |
+
# if current_pred != prev_pred or current_pred != next_pred:
|
| 251 |
+
# # Small adjustment at boundaries
|
| 252 |
+
# smooth_factor = 0.1
|
| 253 |
+
# human_prob = (human_prob * (1 - smooth_factor) +
|
| 254 |
+
# (prev_human + next_human) * smooth_factor / 2)
|
| 255 |
+
# ai_prob = (ai_prob * (1 - smooth_factor) +
|
| 256 |
+
# (prev_ai + next_ai) * smooth_factor / 2)
|
| 257 |
+
|
| 258 |
+
# sentence_predictions.append({
|
| 259 |
+
# 'sentence': sentences[i],
|
| 260 |
+
# 'human_prob': human_prob,
|
| 261 |
+
# 'ai_prob': ai_prob,
|
| 262 |
+
# 'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 263 |
+
# 'confidence': max(human_prob, ai_prob)
|
| 264 |
+
# })
|
| 265 |
+
|
| 266 |
+
# return {
|
| 267 |
+
# 'sentence_predictions': sentence_predictions,
|
| 268 |
+
# 'highlighted_text': self.format_predictions_html(sentence_predictions),
|
| 269 |
+
# 'full_text': text,
|
| 270 |
+
# 'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 271 |
+
# }
|
| 272 |
|
| 273 |
def detailed_scan(self, text: str) -> Dict:
|
| 274 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
| 275 |
+
# Clean up trailing whitespace
|
| 276 |
+
text = text.rstrip()
|
| 277 |
+
|
| 278 |
if not text.strip():
|
| 279 |
return {
|
| 280 |
'sentence_predictions': [],
|