update ACC.py
Browse files
ACC.py
CHANGED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
import evaluate
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
_DESCRIPTION = """
|
| 8 |
+
The Accuracy (ACC) metric is used to measure the proportion of correctly predicted sequences compared to the total number of sequences.
|
| 9 |
+
This metric can handle both integer and string inputs by converting them to strings for comparison.
|
| 10 |
+
The ACC ranges from 0 to 1, where 1 indicates perfect accuracy (all predictions are correct) and 0 indicates complete failure (no predictions are correct).
|
| 11 |
+
It is particularly useful in tasks such as OCR, digit recognition, sequence prediction, and any task where exact matches are required.
|
| 12 |
+
The accuracy can be calculated using the formula:
|
| 13 |
+
|
| 14 |
+
ACC = (Number of Correct Predictions) / (Total Number of Predictions)
|
| 15 |
+
|
| 16 |
+
Where a prediction is considered correct if it exactly matches the ground truth sequence after converting both to strings.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
_KWARGS_DESCRIPTION = """
|
| 20 |
+
Args:
|
| 21 |
+
predictions (`list` of `str` or `int`): Predicted labels (can be strings or integers).
|
| 22 |
+
references (`list` of `str` or `int`): Ground truth labels (can be strings or integers).
|
| 23 |
+
Returns:
|
| 24 |
+
acc (`float`): Accuracy score. Minimum possible value is 0. Maximum possible value is 1.0.
|
| 25 |
+
Examples:
|
| 26 |
+
Example 1 - String inputs:
|
| 27 |
+
>>> acc_metric = evaluate.load("Bekhouche/ACC")
|
| 28 |
+
>>> results = acc_metric.compute(references=['123', '456', '789'], predictions=['123', '456', '789'])
|
| 29 |
+
>>> print(results)
|
| 30 |
+
{'acc': 1.0}
|
| 31 |
+
|
| 32 |
+
Example 2 - Integer inputs:
|
| 33 |
+
>>> results = acc_metric.compute(references=[123, 456, 789], predictions=[123, 456, 789])
|
| 34 |
+
>>> print(results)
|
| 35 |
+
{'acc': 1.0}
|
| 36 |
+
|
| 37 |
+
Example 3 - Mixed inputs:
|
| 38 |
+
>>> results = acc_metric.compute(references=['123', 456, '789'], predictions=[123, '456', 789])
|
| 39 |
+
>>> print(results)
|
| 40 |
+
{'acc': 1.0}
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
_CITATION = """
|
| 44 |
+
@inproceedings{accuracy_metric,
|
| 45 |
+
title={Accuracy as a fundamental metric for sequence prediction tasks},
|
| 46 |
+
author={Various Authors},
|
| 47 |
+
booktitle={Proceedings of various conferences},
|
| 48 |
+
pages={1--10},
|
| 49 |
+
year={2023},
|
| 50 |
+
organization={Various}
|
| 51 |
+
}
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 56 |
+
class ACC(evaluate.Metric):
|
| 57 |
+
def _info(self):
|
| 58 |
+
return evaluate.MetricInfo(
|
| 59 |
+
description=_DESCRIPTION,
|
| 60 |
+
citation=_CITATION,
|
| 61 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 62 |
+
features=datasets.Features(
|
| 63 |
+
{
|
| 64 |
+
"predictions": datasets.Sequence(datasets.Value("string")),
|
| 65 |
+
"references": datasets.Sequence(datasets.Value("string")),
|
| 66 |
+
}
|
| 67 |
+
if self.config_name == "multilabel"
|
| 68 |
+
else {
|
| 69 |
+
"predictions": datasets.Value("string"),
|
| 70 |
+
"references": datasets.Value("string"),
|
| 71 |
+
}
|
| 72 |
+
),
|
| 73 |
+
reference_urls=["https://huggingface.co/spaces/Bekhouche/ACC"],
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def _compute(self, predictions, references):
|
| 77 |
+
acc = 0.0
|
| 78 |
+
if isinstance(predictions, list) and isinstance(references, list):
|
| 79 |
+
correct_predictions = sum([self._compute_acc(prediction, reference) for prediction, reference in zip(predictions, references)])
|
| 80 |
+
acc = correct_predictions / len(predictions)
|
| 81 |
+
elif (isinstance(predictions, (str, int)) and isinstance(references, (str, int))):
|
| 82 |
+
acc = self._compute_acc(predictions, references)
|
| 83 |
+
else:
|
| 84 |
+
raise ValueError("Predictions and references must be either a list[str/int] or str/int")
|
| 85 |
+
return {
|
| 86 |
+
"acc": float(
|
| 87 |
+
acc
|
| 88 |
+
)
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
@staticmethod
|
| 92 |
+
def _compute_acc(prediction, reference):
|
| 93 |
+
# Convert both prediction and reference to strings for comparison
|
| 94 |
+
pred_str = str(prediction)
|
| 95 |
+
ref_str = str(reference)
|
| 96 |
+
return 1.0 if pred_str == ref_str else 0.0
|