File size: 2,061 Bytes
d65c2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from datasets import load_dataset
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    DataCollatorForSeq2Seq,
)
import torch

# 1. Load dataset
dataset = load_dataset("rohitsaxena/MovieSum")

# Rename columns if needed
dataset = dataset.rename_columns({"script": "input_text", "summary": "target_text"})

# 2. Load model and tokenizer
model_checkpoint = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)

# 3. Preprocessing
def preprocess_function(examples):
    inputs = tokenizer(
        examples["input_text"],
        max_length=1024,
        padding="max_length",
        truncation=True,
    )
    with tokenizer.as_target_tokenizer():
        labels = tokenizer(
            examples["target_text"],
            max_length=128,
            padding="max_length",
            truncation=True,
        )
    inputs["labels"] = labels["input_ids"]
    return inputs

tokenized_dataset = dataset.map(preprocess_function, batched=True)

# 4. Training arguments
training_args = Seq2SeqTrainingArguments(
    output_dir="./film-script-summarizer",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=2,
    per_device_eval_batch_size=2,
    num_train_epochs=3,
    weight_decay=0.01,
    save_total_limit=2,
    push_to_hub=True,
    hub_model_id="BhavyaSamhithaMallineni/FilmScriptSummarizer",
    hub_strategy="every_save",
    logging_dir="./logs",
    logging_steps=50,
    fp16=torch.cuda.is_available(),
)

# 5. Trainer setup
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

trainer = Seq2SeqTrainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset["train"],
    eval_dataset=tokenized_dataset["test"],
    tokenizer=tokenizer,
    data_collator=data_collator,
)

# 6. Train and push to hub
trainer.train()
trainer.push_to_hub()
tokenizer.push_to_hub("BhavyaSamhithaMallineni/FilmScriptSummarizer")