Spaces:
Runtime error
Runtime error
Commit
·
61ee04b
1
Parent(s):
0d50e51
Initial commit with app files
Browse files- Dockerfile +17 -10
- README.md +41 -12
- app.py +167 -0
- requirements.txt +11 -2
Dockerfile
CHANGED
|
@@ -1,20 +1,27 @@
|
|
| 1 |
-
FROM python:3.
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
curl \
|
| 8 |
-
git \
|
| 9 |
-
&& rm -rf /var/lib/apt/lists/*
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
EXPOSE 8501
|
| 17 |
|
| 18 |
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
| 19 |
|
| 20 |
-
ENTRYPOINT ["streamlit", "run", "
|
|
|
|
| 1 |
+
FROM python:3.11-slim
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
+
# Сначала копируем requirements.txt, чтобы использовать кэш
|
| 6 |
+
COPY requirements.txt .
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Устанавливаем зависимости
|
| 9 |
+
RUN pip3 install --no-cache-dir -r requirements.txt
|
| 10 |
|
| 11 |
+
# === НОВЫЙ БЛОК: Загрузка моделей при сборке ===
|
| 12 |
+
# Загрузка модели и токенизатора transformers
|
| 13 |
+
RUN python -c "import spacy; spacy.cli.download('ru_core_news_lg')"
|
| 14 |
+
RUN python -c "import nltk; nltk.download('punkt_tab', download_dir='/usr/local/share/nltk_data')"
|
| 15 |
+
RUN python -c "import nltk; nltk.download('stopwords')"
|
| 16 |
+
|
| 17 |
+
# --- НОВАЯ СТРОКА: Загрузка модели spaCy ---
|
| 18 |
+
# Убедитесь, что `ru_core_news_lg` доступна в образе при сборке
|
| 19 |
+
|
| 20 |
+
# Копируем остальные файлы и делаем новую загрузку
|
| 21 |
+
COPY . .
|
| 22 |
|
| 23 |
EXPOSE 8501
|
| 24 |
|
| 25 |
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
| 26 |
|
| 27 |
+
ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
README.md
CHANGED
|
@@ -1,19 +1,48 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
-
app_port: 8501
|
| 8 |
-
tags:
|
| 9 |
-
- streamlit
|
| 10 |
pinned: false
|
| 11 |
-
|
| 12 |
---
|
| 13 |
|
| 14 |
-
#
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 19 |
-
forums](https://discuss.streamlit.io).
|
|
|
|
| 1 |
---
|
| 2 |
+
title: ИИ-ассистент по истории
|
| 3 |
+
emoji: 🤖
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: docker
|
|
|
|
|
|
|
|
|
|
| 7 |
pinned: false
|
| 8 |
+
license: mit
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# 🤖 ИИ-ассистент по истории
|
| 12 |
|
| 13 |
+
Это интерактивное веб-приложение, разработанное с использованием [Streamlit](https://streamlit.io/), которое отвечает на вопросы по истории на русском языке. Приложение использует предобученную модель вопрос-ответа, а также методы поиска похожих вопросов/контекста для генерации ответов.
|
| 14 |
+
|
| 15 |
+
## 📌 Функциональность
|
| 16 |
+
|
| 17 |
+
- **Вопрос-ответ по истории**: Пользователь вводит вопрос по истории, и приложение пытается найти на него ответ, используя знания из датасета `Romyx/ru_QA_school_history`.
|
| 18 |
+
- **Предобработка текста**: Вопросы проходят очистку, токенизацию, лемматизацию (с использованием `spaCy`) и удаление стоп-слов (`NLTK`).
|
| 19 |
+
- **Поиск по схожести**: Используется TF-IDF векторайзер и косинусное сходство для поиска наиболее релевантного контекста в датасете.
|
| 20 |
+
- **Генерация ответа**: Найденный контекст и вопрос пользователя подаются в предобученную модель вопрос-ответа (["AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru"](https://huggingface.co/AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru)) для извлечения ответа.
|
| 21 |
+
|
| 22 |
+
## 🛠️ Технологии и инструменты
|
| 23 |
+
|
| 24 |
+
- **Python**
|
| 25 |
+
- **Streamlit**: для создания веб-интерфейса.
|
| 26 |
+
- **Transformers (Hugging Face)**: для загрузки и использования предобученной модели.
|
| 27 |
+
- **Datasets (Hugging Face)**: для загрузки датасета вопросов-ответов.
|
| 28 |
+
- **spaCy**: для лемматизации русского текста (`ru_core_news_lg`).
|
| 29 |
+
- **NLTK**: для токенизации и стоп-слов.
|
| 30 |
+
- **Scikit-learn**: для вычисления TF-IDF и косинусного сходства.
|
| 31 |
+
- **PyTorch**: бэкенд для моделей `transformers`.
|
| 32 |
+
- **BeautifulSoup**: для очистки HTML-тегов.
|
| 33 |
+
- **Docker**: для контейнеризации приложения.
|
| 34 |
+
- **Hugging Face Spaces**: для хостинга приложения.
|
| 35 |
+
|
| 36 |
+
## 🚀 Как использовать
|
| 37 |
+
|
| 38 |
+
1. Введите ваш вопрос по истории в поле ввода.
|
| 39 |
+
2. Нажмите кнопку **"Получить ответ"**.
|
| 40 |
+
3. Приложение обработает вопрос и покажет найденный ответ или сообщение о том, что ответ не найден.
|
| 41 |
+
|
| 42 |
+
## 📁 Структура репозитория
|
| 43 |
+
|
| 44 |
+
- `app.py`: Основной скрипт Streamlit-приложения.
|
| 45 |
+
- `Dockerfile`: Инструкции для сборки Docker-образа.
|
| 46 |
+
- `requirements.txt`: Список зависимостей Python.
|
| 47 |
+
--
|
| 48 |
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
from datasets import load_dataset, concatenate_datasets
|
| 7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 9 |
+
import torch
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
| 11 |
+
import spacy
|
| 12 |
+
from nltk.corpus import stopwords
|
| 13 |
+
from nltk.tokenize import word_tokenize
|
| 14 |
+
import re
|
| 15 |
+
from bs4 import BeautifulSoup
|
| 16 |
+
|
| 17 |
+
# === Загрузка и подготовка данных ===
|
| 18 |
+
|
| 19 |
+
@st.cache_resource
|
| 20 |
+
def load_data():
|
| 21 |
+
# Загрузка датасета
|
| 22 |
+
data = load_dataset('Romyx/ru_QA_school_history', split='train')
|
| 23 |
+
df = pd.DataFrame(data)
|
| 24 |
+
df['Pt_question'] = df['question'].apply(preprocess_text)
|
| 25 |
+
df['Pt_answer'] = df['answer'].apply(preprocess_text)
|
| 26 |
+
return df
|
| 27 |
+
|
| 28 |
+
@st.cache_resource
|
| 29 |
+
def load_model_and_tokenizer():
|
| 30 |
+
# Загрузка предобученной модели вопрос-ответа (например, SberQuad)
|
| 31 |
+
model_name = "AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru" #"AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru"
|
| 32 |
+
# замените на нужную модель, например, "bert-base-uncased"
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 34 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
| 35 |
+
return tokenizer, model
|
| 36 |
+
|
| 37 |
+
@st.cache_resource
|
| 38 |
+
def build_vectorizer(_df):
|
| 39 |
+
combined_texts = _df['Pt_question'].tolist() + _df['Pt_answer'].tolist()
|
| 40 |
+
vectorizer = TfidfVectorizer()
|
| 41 |
+
tfidf_matrix = vectorizer.fit_transform(combined_texts)
|
| 42 |
+
return vectorizer, tfidf_matrix
|
| 43 |
+
|
| 44 |
+
# === Предобработка текста ===
|
| 45 |
+
|
| 46 |
+
# Загрузка Spacy модели
|
| 47 |
+
nlp = spacy.load('ru_core_news_lg') #'ru_core_news_lg'
|
| 48 |
+
stop_words = set(stopwords.words('russian'))
|
| 49 |
+
|
| 50 |
+
cache_dict = {}
|
| 51 |
+
|
| 52 |
+
def get_norm_form(word):
|
| 53 |
+
if word in cache_dict:
|
| 54 |
+
return cache_dict[word]
|
| 55 |
+
norm_form = nlp(word)[0].lemma_
|
| 56 |
+
cache_dict[word] = norm_form
|
| 57 |
+
return norm_form
|
| 58 |
+
|
| 59 |
+
def remove_html_tags(text):
|
| 60 |
+
soup = BeautifulSoup(text, 'html.parser')
|
| 61 |
+
return soup.text
|
| 62 |
+
|
| 63 |
+
def preprocess_text(text):
|
| 64 |
+
if pd.isna(text) or text is None:
|
| 65 |
+
return ""
|
| 66 |
+
text = remove_html_tags(text)
|
| 67 |
+
text = text.lower()
|
| 68 |
+
|
| 69 |
+
# Обработка знаков препинания
|
| 70 |
+
text = re.sub(r'([^\w\s-]|_)', r' \1 ', text)
|
| 71 |
+
text = re.sub(r'\s+', ' ', text)
|
| 72 |
+
text = re.sub(r'(\w+)-(\w+)', r'\1 \2', text)
|
| 73 |
+
text = re.sub(r'(\d+)(г|кг|см|м|мм|л|мл)', r'\1 \2', text)
|
| 74 |
+
|
| 75 |
+
# Удаление всего, кроме букв, цифр и пробелов
|
| 76 |
+
text = re.sub(r'[^\w\s]', '', text)
|
| 77 |
+
|
| 78 |
+
tokens = word_tokenize(text)
|
| 79 |
+
tokens = [token for token in tokens if token not in stop_words]
|
| 80 |
+
tokens = [get_norm_form(token) for token in tokens]
|
| 81 |
+
|
| 82 |
+
words_to_remove = {"ответ", "new"}
|
| 83 |
+
tokens = [token for token in tokens if token not in words_to_remove]
|
| 84 |
+
|
| 85 |
+
return ' '.join(tokens)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# === Основная функция получения ответа ===
|
| 89 |
+
def get_answer_from_qa_model(user_question, df, vectorizer, tfidf_matrix, model, tokenizer):
|
| 90 |
+
processed = preprocess_text(user_question)
|
| 91 |
+
user_vec = vectorizer.transform([processed])
|
| 92 |
+
|
| 93 |
+
similarities = cosine_similarity(user_vec, tfidf_matrix).flatten()
|
| 94 |
+
|
| 95 |
+
# Проверка, что similarities не пустой
|
| 96 |
+
if len(similarities) == 0:
|
| 97 |
+
return "Тема не входит в программу этих классов."
|
| 98 |
+
|
| 99 |
+
best_match_idx = similarities.argmax()
|
| 100 |
+
best_score = similarities[best_match_idx]
|
| 101 |
+
|
| 102 |
+
if best_score > 0.1:
|
| 103 |
+
# Проверка, что индекс не выходит за границы
|
| 104 |
+
if best_match_idx >= len(df):
|
| 105 |
+
return "Тема не входит в программу этих классов."
|
| 106 |
+
|
| 107 |
+
context = df.iloc[best_match_idx]['answer']
|
| 108 |
+
question = user_question
|
| 109 |
+
|
| 110 |
+
inputs = tokenizer(question, context, return_tensors="pt", truncation=True, padding=True)
|
| 111 |
+
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
outputs = model(**inputs)
|
| 114 |
+
|
| 115 |
+
start_scores = outputs.start_logits
|
| 116 |
+
end_scores = outputs.end_logits
|
| 117 |
+
|
| 118 |
+
# Проверка на корректность размера логитов
|
| 119 |
+
if len(start_scores.shape) == 2:
|
| 120 |
+
start_idx = torch.argmax(start_scores, dim=1)[0].item()
|
| 121 |
+
end_idx = torch.argmax(end_scores, dim=1)[0].item()
|
| 122 |
+
else:
|
| 123 |
+
start_idx = torch.argmax(start_scores).item()
|
| 124 |
+
end_idx = torch.argmax(end_scores).item()
|
| 125 |
+
|
| 126 |
+
# Проверка, что индексы не выходят за пределы
|
| 127 |
+
seq_len = inputs['input_ids'].shape[1]
|
| 128 |
+
if start_idx >= seq_len or end_idx >= seq_len or start_idx > end_idx:
|
| 129 |
+
return "Ответ не найден."
|
| 130 |
+
|
| 131 |
+
answer = tokenizer.decode(inputs['input_ids'][0][start_idx:end_idx+1], skip_special_tokens=True)
|
| 132 |
+
else:
|
| 133 |
+
answer = "Извините, я не понимаю вопрос."
|
| 134 |
+
|
| 135 |
+
return answer
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# === Интерфейс Streamlit ===
|
| 139 |
+
|
| 140 |
+
def main():
|
| 141 |
+
st.title("🤖 ИИ-ассистент по истории (на основе вопрос-ответа)")
|
| 142 |
+
|
| 143 |
+
st.write("Задайте вопрос, и я постараюсь найти на него ответ из базы.")
|
| 144 |
+
|
| 145 |
+
# Загрузка данных и модели
|
| 146 |
+
df = load_data()
|
| 147 |
+
tokenizer, model = load_model_and_tokenizer()
|
| 148 |
+
vectorizer, tfidf_matrix = build_vectorizer(df)
|
| 149 |
+
|
| 150 |
+
# Поле ввода вопроса
|
| 151 |
+
user_input = st.text_input("Введите ваш вопрос:")
|
| 152 |
+
|
| 153 |
+
if st.button("Получить ответ"):
|
| 154 |
+
if user_input.strip():
|
| 155 |
+
with st.spinner("Ищем ответ..."):
|
| 156 |
+
response = get_answer_from_qa_model(
|
| 157 |
+
user_input, df, vectorizer, tfidf_matrix, model, tokenizer
|
| 158 |
+
)
|
| 159 |
+
st.success("Ответ:")
|
| 160 |
+
st.write(response)
|
| 161 |
+
else:
|
| 162 |
+
st.warning("Пожалуйста, введите вопрос.")
|
| 163 |
+
|
| 164 |
+
if __name__ == "__main__":
|
| 165 |
+
main()
|
| 166 |
+
|
| 167 |
+
|
requirements.txt
CHANGED
|
@@ -1,3 +1,12 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
pandas
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
streamlit
|
| 3 |
+
openai
|
| 4 |
pandas
|
| 5 |
+
numpy
|
| 6 |
+
datasets
|
| 7 |
+
scikit-learn
|
| 8 |
+
torch --index-url https://download.pytorch.org/whl/cpu
|
| 9 |
+
transformers
|
| 10 |
+
spacy
|
| 11 |
+
nltk
|
| 12 |
+
beautifulsoup4
|