Bliss-Ruth commited on
Commit
8dc4f2c
·
verified ·
1 Parent(s): 6d36e13

Created app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -0
app.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import torch
3
+ import torch.nn as nn
4
+ from transformers import XCLIPProcessor, XCLIPModel
5
+ import gradio as gr
6
+ import cv2
7
+ import numpy as np
8
+ from PIL import Image
9
+ import tempfile
10
+ import os
11
+
12
+ # Your exact model class
13
+ class XCLIPSignLanguageClassifier(nn.Module):
14
+ def __init__(self, num_classes, feature_dim=512):
15
+ super().__init__()
16
+ self.xclip = XCLIPModel.from_pretrained("microsoft/xclip-base-patch32")
17
+ for param in self.xclip.parameters():
18
+ param.requires_grad = False
19
+ self.classifier = nn.Sequential(
20
+ nn.Dropout(0.5), nn.Linear(feature_dim, 128), nn.LayerNorm(128), nn.ReLU(),
21
+ nn.Dropout(0.3), nn.Linear(128, 64), nn.LayerNorm(64), nn.ReLU(),
22
+ nn.Dropout(0.2), nn.Linear(64, num_classes)
23
+ )
24
+
25
+ def forward(self, input_ids, attention_mask, pixel_values):
26
+ with torch.no_grad():
27
+ outputs = self.xclip(input_ids=input_ids, attention_mask=attention_mask,
28
+ pixel_values=pixel_values, return_dict=True)
29
+ video_embeds = outputs.video_embeds
30
+ return self.classifier(video_embeds)
31
+
32
+ print("🚀 Loading Ugandan Sign Language Model...")
33
+
34
+ # Initialize
35
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
36
+ processor = XCLIPProcessor.from_pretrained("microsoft/xclip-base-patch32")
37
+
38
+ # Load your trained model
39
+ try:
40
+ checkpoint = torch.load("best_xclip_model.pth", map_location=device, weights_only=False)
41
+ model = XCLIPSignLanguageClassifier(num_classes=len(checkpoint["label_to_id"])).to(device)
42
+ model.load_state_dict(checkpoint["model_state_dict"])
43
+ model.eval()
44
+ id_to_label = checkpoint["id_to_label"]
45
+ print(f"✅ Model loaded! Can recognize {len(id_to_label)} signs: {list(id_to_label.values())}")
46
+ except Exception as e:
47
+ print(f"❌ Error loading model: {e}")
48
+ exit(1)
49
+
50
+ def extract_frames(video_path, num_frames=8):
51
+ """Extract frames from video file"""
52
+ try:
53
+ cap = cv2.VideoCapture(video_path)
54
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
55
+
56
+ if total_frames <= num_frames:
57
+ indices = list(range(total_frames)) + [total_frames-1] * (num_frames - total_frames)
58
+ else:
59
+ start = total_frames // 6
60
+ end = 5 * total_frames // 6
61
+ indices = np.linspace(start, end, num_frames, dtype=int)
62
+
63
+ frames = []
64
+ for idx in indices:
65
+ cap.set(cv2.CAP_PROP_POS_FRAMES, int(idx))
66
+ ret, frame = cap.read()
67
+ if ret:
68
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
69
+ frame = cv2.resize(frame, (224, 224))
70
+ frames.append(Image.fromarray(frame))
71
+ else:
72
+ frames.append(Image.new("RGB", (224, 224), (128, 128, 128)))
73
+ cap.release()
74
+ return frames
75
+ except Exception as e:
76
+ print(f"Frame extraction error: {e}")
77
+ return [Image.new("RGB", (224, 224), (128, 128, 128)) for _ in range(num_frames)]
78
+
79
+ def predict_video(video_file, user_correction=None):
80
+ """Predict sign language from uploaded video"""
81
+ try:
82
+ # Get prediction
83
+ predicted_label, confidence = predict_sign(video_file, model, processor, id_to_label, device)
84
+
85
+ # Format results - EXACT SAME as our Colab interface
86
+ result = f"🎯 **Prediction**: {predicted_label}\n"
87
+ result += f"📊 **Confidence**: {confidence*100:.1f}%\n"
88
+ result += f"🔍 **Model**: X-CLIP Fine-tuned"
89
+
90
+ return result
91
+
92
+ except Exception as e:
93
+ return f"❌ Error processing video: {str(e)}"
94
+
95
+ def predict_sign(video_path, model, processor, id_to_label, device):
96
+ """Core prediction function"""
97
+ try:
98
+ # Sample frames
99
+ frames = extract_frames(video_path)
100
+
101
+ # Process
102
+ video_inputs = processor.video_processor([frames], return_tensors="pt")
103
+ text_inputs = processor(text=["a person performing sign language"], return_tensors="pt")
104
+
105
+ pixel_values = video_inputs['pixel_values'].to(device)
106
+ input_ids = text_inputs['input_ids'].to(device)
107
+ attention_mask = text_inputs['attention_mask'].to(device)
108
+
109
+ with torch.no_grad():
110
+ logits = model(input_ids, attention_mask, pixel_values)
111
+ probs = torch.softmax(logits, dim=1)
112
+ confidence, pred_class = torch.max(probs, 1)
113
+
114
+ return id_to_label[pred_class.item()], confidence.item()
115
+
116
+ except Exception as e:
117
+ print(f"❌ Prediction error: {e}")
118
+ return "Unknown", 0.0
119
+
120
+ # Create the interface - EXACT SAME as our Colab version
121
+ demo = gr.Interface(
122
+ fn=predict_video,
123
+ inputs=gr.Video(label="📹 Upload Sign Language Video"),
124
+ outputs=gr.Markdown(label="🎯 Prediction Results"),
125
+ title="🤟 Ugandan Sign Language Recognition",
126
+ description="Upload a video of sign language and the AI will predict which sign it is!",
127
+ examples=[] # You can add example videos later
128
+ )
129
+
130
+ # For Hugging Face Spaces deployment
131
+ if __name__ == "__main__":
132
+ demo.launch(server_name="0.0.0.0", server_port=7860)