```bibtex
@inproceedings{wang2025vggt,
title={VGGT: Visual Geometry Grounded Transformer},
author={Wang, Jianyuan and Chen, Minghao and Karaev, Nikita and Vedaldi, Andrea and Rupprecht, Christian and Novotny, David},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2025}
}
```
## Updates
- [July 29, 2025] We've updated the license for VGGT to permit **commercial use** (excluding military applications). All code in this repository is now under a commercial-use-friendly license. However, only the newly released checkpoint [**VGGT-1B-Commercial**](https://huggingface.co/facebook/VGGT-1B-Commercial) is licensed for commercial usage — the original checkpoint remains non-commercial. Full license details are available [here](https://github.com/facebookresearch/vggt/blob/main/LICENSE.txt). Access to the checkpoint requires completing an application form, which is processed by a system similar to LLaMA's approval workflow, automatically. The new checkpoint delivers similar performance to the original model. Please submit an issue if you notice a significant performance discrepancy.
- [July 6, 2025] Training code is now available in the `training` folder, including an example to finetune VGGT on a custom dataset.
- [June 13, 2025] Honored to receive the Best Paper Award at CVPR 2025! Apologies if I’m slow to respond to queries or GitHub issues these days. If you’re interested, our oral presentation is available [here](https://docs.google.com/presentation/d/1JVuPnuZx6RgAy-U5Ezobg73XpBi7FrOh/edit?usp=sharing&ouid=107115712143490405606&rtpof=true&sd=true). Another long presentation can be found [here](https://docs.google.com/presentation/d/1aSv0e5PmH1mnwn2MowlJIajFUYZkjqgw/edit?usp=sharing&ouid=107115712143490405606&rtpof=true&sd=true) (Note: it’s shared in .pptx format with animations — quite large, but feel free to use it as a template if helpful.)
- [June 2, 2025] Added a script to run VGGT and save predictions in COLMAP format, with bundle adjustment support optional. The saved COLMAP files can be directly used with [gsplat](https://github.com/nerfstudio-project/gsplat) or other NeRF/Gaussian splatting libraries.
- [May 3, 2025] Evaluation code for reproducing our camera pose estimation results on Co3D is now available in the [evaluation](https://github.com/facebookresearch/vggt/tree/evaluation) branch.
## Overview
Visual Geometry Grounded Transformer (VGGT, CVPR 2025) is a feed-forward neural network that directly infers all key 3D attributes of a scene, including extrinsic and intrinsic camera parameters, point maps, depth maps, and 3D point tracks, **from one, a few, or hundreds of its views, within seconds**.
## Quick Start
First, clone this repository to your local machine, and install the dependencies (torch, torchvision, numpy, Pillow, and huggingface_hub).
```bash
git clone git@github.com:facebookresearch/vggt.git
cd vggt
pip install -r requirements.txt
```
Alternatively, you can install VGGT as a package (