Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
2dc971f
1
Parent(s):
63859b8
update the descriptions
Browse files- dataset_descriptions.json +44 -0
dataset_descriptions.json
CHANGED
|
@@ -1,112 +1,156 @@
|
|
| 1 |
{
|
| 2 |
"ADMET_Caco2_Wang": {
|
| 3 |
"task_type": "regression",
|
|
|
|
| 4 |
"description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
|
|
|
|
| 5 |
"num_molecules": 906
|
| 6 |
},
|
| 7 |
"ADMET_Bioavailability_Ma": {
|
| 8 |
"task_type": "classification",
|
|
|
|
| 9 |
"description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
|
|
|
|
| 10 |
"num_molecules": 640
|
| 11 |
},
|
| 12 |
"ADMET_Lipophilicity_AstraZeneca": {
|
| 13 |
"task_type": "regression",
|
|
|
|
| 14 |
"description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
|
|
|
|
| 15 |
"num_molecules": 4200
|
| 16 |
},
|
| 17 |
"ADMET_Solubility_AqSolDB": {
|
| 18 |
"task_type": "regression",
|
|
|
|
| 19 |
"description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
|
|
|
|
| 20 |
"num_molecules": 9982
|
| 21 |
},
|
| 22 |
"ADMET_HIA_Hou": {
|
| 23 |
"task_type": "classification",
|
|
|
|
| 24 |
"description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
|
|
|
|
| 25 |
"num_molecules": 578
|
| 26 |
},
|
| 27 |
"ADMET_Pgp_Broccatelli": {
|
| 28 |
"task_type": "classification",
|
|
|
|
| 29 |
"description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
|
|
|
|
| 30 |
"num_molecules": 1212
|
| 31 |
},
|
| 32 |
"ADMET_BBB_Martins": {
|
| 33 |
"task_type": "classification",
|
|
|
|
| 34 |
"description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
|
|
|
|
| 35 |
"num_molecules": 1915
|
| 36 |
},
|
| 37 |
"ADMET_PPBR_AZ": {
|
| 38 |
"task_type": "regression",
|
|
|
|
| 39 |
"description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
|
|
|
|
| 40 |
"num_molecules": 1797
|
| 41 |
},
|
| 42 |
"ADMET_VDss_Lombardo": {
|
| 43 |
"task_type": "regression",
|
|
|
|
| 44 |
"description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
|
|
|
|
| 45 |
"num_molecules": 1130
|
| 46 |
},
|
| 47 |
"ADMET_CYP2C9_Veith": {
|
| 48 |
"task_type": "classification",
|
|
|
|
| 49 |
"description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
|
|
|
|
| 50 |
"num_molecules": 12092
|
| 51 |
},
|
| 52 |
"ADMET_CYP2D6_Veith": {
|
| 53 |
"task_type": "classification",
|
|
|
|
| 54 |
"description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
|
|
|
|
| 55 |
"num_molecules": 13130
|
| 56 |
},
|
| 57 |
"ADMET_CYP3A4_Veith": {
|
| 58 |
"task_type": "classification",
|
|
|
|
| 59 |
"description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
|
|
|
|
| 60 |
"num_molecules": 12328
|
| 61 |
},
|
| 62 |
"ADMET_CYP2C9_Substrate_CarbonMangels": {
|
| 63 |
"task_type": "classification",
|
|
|
|
| 64 |
"description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
|
|
|
|
| 65 |
"num_molecules": 666
|
| 66 |
},
|
| 67 |
"ADMET_CYP2D6_Substrate_CarbonMangels": {
|
| 68 |
"task_type": "classification",
|
|
|
|
| 69 |
"description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
|
|
|
|
| 70 |
"num_molecules": 664
|
| 71 |
},
|
| 72 |
"ADMET_CYP3A4_Substrate_CarbonMangels": {
|
| 73 |
"task_type": "classification",
|
|
|
|
| 74 |
"description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
|
|
|
|
| 75 |
"num_molecules": 667
|
| 76 |
},
|
| 77 |
"ADMET_Half_Life_Obach": {
|
| 78 |
"task_type": "regression",
|
|
|
|
| 79 |
"description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
|
|
|
|
| 80 |
"num_molecules": 667
|
| 81 |
},
|
| 82 |
"ADMET_Clearance_Hepatocyte_AZ": {
|
| 83 |
"task_type": "regression",
|
|
|
|
| 84 |
"description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
|
|
|
|
| 85 |
"num_molecules": 1020
|
| 86 |
},
|
| 87 |
"ADMET_Clearance_Microsome_AZ": {
|
| 88 |
"task_type": "regression",
|
|
|
|
| 89 |
"description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
|
|
|
|
| 90 |
"num_molecules": 1102
|
| 91 |
},
|
| 92 |
"ADMET_LD50_Zhu": {
|
| 93 |
"task_type": "regression",
|
|
|
|
| 94 |
"description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
|
|
|
|
| 95 |
"num_molecules": 7385
|
| 96 |
},
|
| 97 |
"ADMET_hERG": {
|
| 98 |
"task_type": "classification",
|
|
|
|
| 99 |
"description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
|
|
|
|
| 100 |
"num_molecules": 648
|
| 101 |
},
|
| 102 |
"ADMET_AMES": {
|
| 103 |
"task_type": "classification",
|
|
|
|
| 104 |
"description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
|
|
|
|
| 105 |
"num_molecules": 7255
|
| 106 |
},
|
| 107 |
"ADMET_DILI": {
|
| 108 |
"task_type": "classification",
|
|
|
|
| 109 |
"description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
|
|
|
|
| 110 |
"num_molecules": 475
|
| 111 |
}
|
| 112 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"ADMET_Caco2_Wang": {
|
| 3 |
"task_type": "regression",
|
| 4 |
+
"task_name": "Drug Permeability",
|
| 5 |
"description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
|
| 6 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#caco-2-cell-effective-permeability-wang-et-al",
|
| 7 |
"num_molecules": 906
|
| 8 |
},
|
| 9 |
"ADMET_Bioavailability_Ma": {
|
| 10 |
"task_type": "classification",
|
| 11 |
+
"task_name": "Drug Oral Bioavailability",
|
| 12 |
"description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
|
| 13 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#bioavailability-ma-et-al",
|
| 14 |
"num_molecules": 640
|
| 15 |
},
|
| 16 |
"ADMET_Lipophilicity_AstraZeneca": {
|
| 17 |
"task_type": "regression",
|
| 18 |
+
"task_name": "Drug Lipophilicity",
|
| 19 |
"description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
|
| 20 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#lipophilicity-astrazeneca",
|
| 21 |
"num_molecules": 4200
|
| 22 |
},
|
| 23 |
"ADMET_Solubility_AqSolDB": {
|
| 24 |
"task_type": "regression",
|
| 25 |
+
"task_name": "Drug Aqueous Solubility",
|
| 26 |
"description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
|
| 27 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#solubility-aqsoldb",
|
| 28 |
"num_molecules": 9982
|
| 29 |
},
|
| 30 |
"ADMET_HIA_Hou": {
|
| 31 |
"task_type": "classification",
|
| 32 |
+
"task_name": "Drug Human Intestinal Absorption",
|
| 33 |
"description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
|
| 34 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#hia-human-intestinal-absorption-hou-et-al",
|
| 35 |
"num_molecules": 578
|
| 36 |
},
|
| 37 |
"ADMET_Pgp_Broccatelli": {
|
| 38 |
"task_type": "classification",
|
| 39 |
+
"task_name": "P-glycoprotein Inhibition",
|
| 40 |
"description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
|
| 41 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#pgp-p-glycoprotein-inhibition-broccatelli-et-al",
|
| 42 |
"num_molecules": 1212
|
| 43 |
},
|
| 44 |
"ADMET_BBB_Martins": {
|
| 45 |
"task_type": "classification",
|
| 46 |
+
"task_name": "Blood-Brain Barrier Permeability",
|
| 47 |
"description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
|
| 48 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#bbb-blood-brain-barrier-martins-et-al",
|
| 49 |
"num_molecules": 1915
|
| 50 |
},
|
| 51 |
"ADMET_PPBR_AZ": {
|
| 52 |
"task_type": "regression",
|
| 53 |
+
"task_name": "Plasma Protein Binding Rate",
|
| 54 |
"description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
|
| 55 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#ppbr-plasma-protein-binding-rate-astrazeneca",
|
| 56 |
"num_molecules": 1797
|
| 57 |
},
|
| 58 |
"ADMET_VDss_Lombardo": {
|
| 59 |
"task_type": "regression",
|
| 60 |
+
"task_name": "Volume of Distribution at Steady State",
|
| 61 |
"description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
|
| 62 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#vdss-volumn-of-distribution-at-steady-state-lombardo-et-al",
|
| 63 |
"num_molecules": 1130
|
| 64 |
},
|
| 65 |
"ADMET_CYP2C9_Veith": {
|
| 66 |
"task_type": "classification",
|
| 67 |
+
"task_name": "CYP2C9 Inhibition",
|
| 68 |
"description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
|
| 69 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2c9-inhibition-veith-et-al",
|
| 70 |
"num_molecules": 12092
|
| 71 |
},
|
| 72 |
"ADMET_CYP2D6_Veith": {
|
| 73 |
"task_type": "classification",
|
| 74 |
+
"task_name": "CYP2D6 Inhibition",
|
| 75 |
"description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
|
| 76 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2d6-inhibition-veith-et-al",
|
| 77 |
"num_molecules": 13130
|
| 78 |
},
|
| 79 |
"ADMET_CYP3A4_Veith": {
|
| 80 |
"task_type": "classification",
|
| 81 |
+
"task_name": "CPY3A4 Inhibition",
|
| 82 |
"description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
|
| 83 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-3a4-inhibition-veith-et-al",
|
| 84 |
"num_molecules": 12328
|
| 85 |
},
|
| 86 |
"ADMET_CYP2C9_Substrate_CarbonMangels": {
|
| 87 |
"task_type": "classification",
|
| 88 |
+
"task_name": "CYP2C9 Substrate",
|
| 89 |
"description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
|
| 90 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2c9-substrate-carbon-mangels-et-al",
|
| 91 |
"num_molecules": 666
|
| 92 |
},
|
| 93 |
"ADMET_CYP2D6_Substrate_CarbonMangels": {
|
| 94 |
"task_type": "classification",
|
| 95 |
+
"task_name": "CYP2D6 Substrate",
|
| 96 |
"description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
|
| 97 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2d6-substrate-carbon-mangels-et-al",
|
| 98 |
"num_molecules": 664
|
| 99 |
},
|
| 100 |
"ADMET_CYP3A4_Substrate_CarbonMangels": {
|
| 101 |
"task_type": "classification",
|
| 102 |
+
"task_name": "CYP3A4 Substrate",
|
| 103 |
"description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
|
| 104 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp3a4-substrate-carbon-mangels-et-al",
|
| 105 |
"num_molecules": 667
|
| 106 |
},
|
| 107 |
"ADMET_Half_Life_Obach": {
|
| 108 |
"task_type": "regression",
|
| 109 |
+
"task_name": "Drug Half-Life Duration",
|
| 110 |
"description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
|
| 111 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#half-life-obach-et-al",
|
| 112 |
"num_molecules": 667
|
| 113 |
},
|
| 114 |
"ADMET_Clearance_Hepatocyte_AZ": {
|
| 115 |
"task_type": "regression",
|
| 116 |
+
"task_name": "Drug Clearance from Hepatocyte Experiments",
|
| 117 |
"description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
|
| 118 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
|
| 119 |
"num_molecules": 1020
|
| 120 |
},
|
| 121 |
"ADMET_Clearance_Microsome_AZ": {
|
| 122 |
"task_type": "regression",
|
| 123 |
+
"task_name": "Drug Clearance from Microsome Experiments",
|
| 124 |
"description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
|
| 125 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
|
| 126 |
"num_molecules": 1102
|
| 127 |
},
|
| 128 |
"ADMET_LD50_Zhu": {
|
| 129 |
"task_type": "regression",
|
| 130 |
+
"task_name": "Drug Acute Toxicity",
|
| 131 |
"description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
|
| 132 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#acute-toxicity-ld50",
|
| 133 |
"num_molecules": 7385
|
| 134 |
},
|
| 135 |
"ADMET_hERG": {
|
| 136 |
"task_type": "classification",
|
| 137 |
+
"task_name": "hERG Channel Blockage",
|
| 138 |
"description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
|
| 139 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#herg-blockers",
|
| 140 |
"num_molecules": 648
|
| 141 |
},
|
| 142 |
"ADMET_AMES": {
|
| 143 |
"task_type": "classification",
|
| 144 |
+
"task_name": "Drug Mutagenicity",
|
| 145 |
"description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
|
| 146 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#ames-mutagenicity",
|
| 147 |
"num_molecules": 7255
|
| 148 |
},
|
| 149 |
"ADMET_DILI": {
|
| 150 |
"task_type": "classification",
|
| 151 |
+
"task_name": "Drug-Induced Liver Injury",
|
| 152 |
"description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
|
| 153 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#dili-drug-induced-liver-injury",
|
| 154 |
"num_molecules": 475
|
| 155 |
}
|
| 156 |
}
|