Spaces:
Running
on
Zero
Running
on
Zero
gagan/modelmerging_and_multiturn (#6)
Browse files- Model merging + audio cache (eabe9bf6849303d5a373ac512aa5ea120e210ea4)
- NatureLM/config.py +1 -0
- NatureLM/models/NatureLM.py +188 -19
- app.py +72 -46
- configs/inference.yml +1 -0
- data_store.py +16 -11
NatureLM/config.py
CHANGED
|
@@ -136,6 +136,7 @@ class GenerateConfig(BaseModel, extra="forbid", validate_assignment=True):
|
|
| 136 |
temperature: float
|
| 137 |
repetition_penalty: float
|
| 138 |
length_penalty: float
|
|
|
|
| 139 |
|
| 140 |
|
| 141 |
class ModelConfig(BaseModel, extra="forbid", validate_assignment=True):
|
|
|
|
| 136 |
temperature: float
|
| 137 |
repetition_penalty: float
|
| 138 |
length_penalty: float
|
| 139 |
+
merging_alpha: float = 1.0
|
| 140 |
|
| 141 |
|
| 142 |
class ModelConfig(BaseModel, extra="forbid", validate_assignment=True):
|
NatureLM/models/NatureLM.py
CHANGED
|
@@ -12,8 +12,10 @@
|
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
|
|
|
|
| 15 |
import logging
|
| 16 |
import os
|
|
|
|
| 17 |
from pathlib import Path
|
| 18 |
from typing import Literal, Union
|
| 19 |
|
|
@@ -35,8 +37,98 @@ from .Qformer import BertConfig, BertLMHeadModel
|
|
| 35 |
from .utils import StoppingCriteriaSub
|
| 36 |
|
| 37 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
auth_token = os.getenv('llama')
|
| 40 |
|
| 41 |
class NatureLM(nn.Module, PyTorchModelHubMixin):
|
| 42 |
def __init__(
|
|
@@ -65,9 +157,16 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 65 |
max_txt_len: int = 128,
|
| 66 |
end_sym: str = "</s>",
|
| 67 |
device: str = "cuda",
|
|
|
|
| 68 |
):
|
| 69 |
super().__init__()
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
self.beats_path = beats_path
|
| 72 |
self.beats_cfg = beats_cfg
|
| 73 |
self.use_audio_Qformer = use_audio_Qformer
|
|
@@ -84,7 +183,9 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 84 |
|
| 85 |
logging.info(f"Llama path: {llama_path}")
|
| 86 |
logging.info("Loading Llama Tokenizer")
|
| 87 |
-
self.llama_tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
| 88 |
self.llama_tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
| 89 |
self.llama_tokenizer.padding_side = "right"
|
| 90 |
|
|
@@ -95,7 +196,6 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 95 |
torch_dtype=torch.float32,
|
| 96 |
attn_implementation="eager",
|
| 97 |
device_map="cpu",
|
| 98 |
-
use_auth_token=auth_token
|
| 99 |
)
|
| 100 |
# An issue with tiny-llama is that pad_token_id was set to -1, but
|
| 101 |
# model.save_pretrained checks generation configs and does not allow -1 as
|
|
@@ -106,7 +206,6 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 106 |
llama_path,
|
| 107 |
torch_dtype=torch.bfloat16,
|
| 108 |
attn_implementation=flash_attn,
|
| 109 |
-
use_auth_token=auth_token
|
| 110 |
)
|
| 111 |
|
| 112 |
self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
|
|
@@ -135,7 +234,9 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 135 |
self.beats = BEATs(cfg=BEATsConfig(dict(self.beats_cfg)))
|
| 136 |
|
| 137 |
if self.beats_path:
|
| 138 |
-
beats_ckpt = universal_torch_load(
|
|
|
|
|
|
|
| 139 |
self.beats.load_state_dict(beats_ckpt["model"])
|
| 140 |
|
| 141 |
self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim)
|
|
@@ -336,11 +437,15 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 336 |
audio_embeds = self.ln_audio(audio_embeds)
|
| 337 |
|
| 338 |
# Generate attention mask
|
| 339 |
-
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
|
|
|
|
|
|
|
| 340 |
|
| 341 |
if self.window_level_Qformer:
|
| 342 |
B, T, C = audio_embeds.shape # batch, T, Channels
|
| 343 |
-
kernel = round(
|
|
|
|
|
|
|
| 344 |
stride = round(1500 * self.second_stride / 30.0) # Calculate stride size
|
| 345 |
kernel = (1, kernel)
|
| 346 |
stride = (1, stride)
|
|
@@ -360,7 +465,9 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 360 |
audio_embeds_overlap, [0, 3, 2, 1]
|
| 361 |
) # (B, num_windows, kernel_size, C)
|
| 362 |
audio_embeds = audio_embeds_overlap.reshape(-1, kernel[1], C)
|
| 363 |
-
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
|
|
|
|
|
|
|
| 364 |
|
| 365 |
# Q-Former mechanism
|
| 366 |
query_tokens = self.audio_query_tokens.expand(audio_embeds.shape[0], -1, -1)
|
|
@@ -376,13 +483,19 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 376 |
if self.window_level_Qformer:
|
| 377 |
audio_embeds = audio_embeds.view(B, -1, audio_embeds.size(2)).contiguous()
|
| 378 |
|
| 379 |
-
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
|
|
|
|
|
|
|
| 380 |
|
| 381 |
elif self.htsat:
|
| 382 |
# HTSAT processing
|
| 383 |
audio_embeds = self.ln_audio(audio_embeds)
|
| 384 |
-
audio_embeds = self.audio_llama_proj(audio_embeds).reshape(
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
else:
|
| 388 |
raise NotImplementedError("no audio qformer or max pooling")
|
|
@@ -390,9 +503,32 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 390 |
return audio_embeds, audio_atts
|
| 391 |
|
| 392 |
def encode_audio(self, raw_wav, audio_padding_mask=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
with torch.autocast(self.device.type, dtype=torch.bfloat16):
|
| 394 |
audio_embeds, audio_pad_mask = self.beats(raw_wav, padding_mask=audio_padding_mask)
|
| 395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
def prompt_wrap(self, audio_embeds, audio_atts, prompt: list[str]):
|
| 398 |
"""Merge audio embeddings with embeddings of the tokens in the prompt.
|
|
@@ -440,7 +576,9 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 440 |
wrapped_atts = []
|
| 441 |
|
| 442 |
for part in prompt_parts:
|
| 443 |
-
tokens = self.llama_tokenizer(
|
|
|
|
|
|
|
| 444 |
part_embeds = self.llama_embed_tokens(tokens.input_ids).squeeze(0)
|
| 445 |
part_atts = tokens.attention_mask.squeeze(0)
|
| 446 |
wrapped_embeds.append(part_embeds)
|
|
@@ -506,7 +644,9 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 506 |
|
| 507 |
# BOS token embeddings
|
| 508 |
bos_token_id = self.llama_tokenizer.bos_token_id
|
| 509 |
-
bos = torch.full(
|
|
|
|
|
|
|
| 510 |
bos_embeds = self.llama_embed_tokens(bos)
|
| 511 |
|
| 512 |
# Prepare lists to collect per-sample embeddings, attention masks, and targets
|
|
@@ -521,7 +661,9 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 521 |
|
| 522 |
# Extract non-padded text embeddings and attention mask
|
| 523 |
text_embed = to_regress_embeds[i][to_regress_tokens.attention_mask[i].bool()]
|
| 524 |
-
text_att = to_regress_tokens.attention_mask[i][
|
|
|
|
|
|
|
| 525 |
|
| 526 |
# Extract corresponding targets for the text tokens
|
| 527 |
target = targets[i][to_regress_tokens.attention_mask[i].bool()]
|
|
@@ -581,7 +723,9 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 581 |
shift_logits.view(-1, nvocab), # Flatten to [batch_size * (seq_len-1), vocab_size]
|
| 582 |
shift_labels.view(-1), # Flatten to [batch_size * (seq_len-1)]
|
| 583 |
)
|
| 584 |
-
loss_per_token = loss_per_token.view(
|
|
|
|
|
|
|
| 585 |
|
| 586 |
# Create mask
|
| 587 |
mask = shift_labels != -100 # [batch_size, seq_len-1]
|
|
@@ -597,7 +741,9 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 597 |
predicted_tokens = shift_logits.argmax(dim=-1) # [batch_size, seq_len-1]
|
| 598 |
|
| 599 |
# Compute per-example correct counts
|
| 600 |
-
correct_per_sample = (
|
|
|
|
|
|
|
| 601 |
total_tokens_per_sample = mask.sum(dim=1).float() # [batch_size]
|
| 602 |
|
| 603 |
# Total correct and total tokens across the batch
|
|
@@ -615,8 +761,31 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 615 |
|
| 616 |
return {"loss": loss, "per_example_loss": loss_per_example}
|
| 617 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 618 |
@torch.inference_mode()
|
| 619 |
-
def generate(self, samples, generate_cfg, prompts):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 620 |
batch_size = len(prompts)
|
| 621 |
|
| 622 |
raw_wav = samples["raw_wav"]
|
|
@@ -645,7 +814,7 @@ class NatureLM(nn.Module, PyTorchModelHubMixin):
|
|
| 645 |
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
| 646 |
|
| 647 |
with torch.autocast(self.device.type, dtype=torch.bfloat16):
|
| 648 |
-
outputs = self.llama_model.generate(
|
| 649 |
inputs_embeds=embeds.bfloat16(),
|
| 650 |
max_new_tokens=generate_cfg.max_new_tokens,
|
| 651 |
stopping_criteria=stopping_criteria,
|
|
|
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
|
| 15 |
+
import hashlib
|
| 16 |
import logging
|
| 17 |
import os
|
| 18 |
+
from collections import OrderedDict
|
| 19 |
from pathlib import Path
|
| 20 |
from typing import Literal, Union
|
| 21 |
|
|
|
|
| 37 |
from .utils import StoppingCriteriaSub
|
| 38 |
|
| 39 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 40 |
+
auth_token = os.getenv("llama", None)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class AudioEncodingCache:
|
| 44 |
+
"""LRU cache for audio encoding with content-based hashing."""
|
| 45 |
+
|
| 46 |
+
def __init__(self, capacity: int = 100):
|
| 47 |
+
self.capacity = capacity
|
| 48 |
+
self.cache = OrderedDict()
|
| 49 |
+
self.hits = 0
|
| 50 |
+
self.misses = 0
|
| 51 |
+
|
| 52 |
+
def _compute_hash(
|
| 53 |
+
self, raw_wav: torch.Tensor, audio_padding_mask: torch.Tensor | None = None
|
| 54 |
+
) -> str:
|
| 55 |
+
"""Compute a hash key from the audio tensor and padding mask."""
|
| 56 |
+
# Use a sample of the tensor for efficiency (first, middle, last portions)
|
| 57 |
+
B, L = raw_wav.shape
|
| 58 |
+
sample_size = min(1000, L) # Sample 1000 points or entire length if smaller
|
| 59 |
+
|
| 60 |
+
# Sample from beginning, middle, and end
|
| 61 |
+
indices = torch.cat(
|
| 62 |
+
[
|
| 63 |
+
torch.arange(min(sample_size // 3, L)),
|
| 64 |
+
torch.arange(L // 2, min(L // 2 + sample_size // 3, L)),
|
| 65 |
+
torch.arange(max(0, L - sample_size // 3), L),
|
| 66 |
+
]
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
sampled_wav = raw_wav[:, indices].cpu().numpy().tobytes()
|
| 70 |
+
|
| 71 |
+
# Create hash from audio data, shape, and padding mask presence
|
| 72 |
+
hash_obj = hashlib.sha256(sampled_wav)
|
| 73 |
+
hash_obj.update(str(raw_wav.shape).encode())
|
| 74 |
+
hash_obj.update(str(raw_wav.dtype).encode())
|
| 75 |
+
|
| 76 |
+
if audio_padding_mask is not None:
|
| 77 |
+
mask_sample = audio_padding_mask[:, indices].cpu().numpy().tobytes()
|
| 78 |
+
hash_obj.update(mask_sample)
|
| 79 |
+
hash_obj.update(str(audio_padding_mask.shape).encode())
|
| 80 |
+
else:
|
| 81 |
+
hash_obj.update(b"no_mask")
|
| 82 |
+
|
| 83 |
+
return hash_obj.hexdigest()
|
| 84 |
+
|
| 85 |
+
def get(self, raw_wav: torch.Tensor, audio_padding_mask: torch.Tensor = None):
|
| 86 |
+
"""Retrieve cached encoding if available."""
|
| 87 |
+
key = self._compute_hash(raw_wav, audio_padding_mask)
|
| 88 |
+
|
| 89 |
+
if key in self.cache:
|
| 90 |
+
self.hits += 1
|
| 91 |
+
# Move to end (most recently used)
|
| 92 |
+
self.cache.move_to_end(key)
|
| 93 |
+
return self.cache[key]
|
| 94 |
+
|
| 95 |
+
self.misses += 1
|
| 96 |
+
return None
|
| 97 |
+
|
| 98 |
+
def put(self, raw_wav: torch.Tensor, audio_padding_mask: torch.Tensor, value: tuple):
|
| 99 |
+
"""Store encoding in cache (on CPU to save GPU memory)."""
|
| 100 |
+
key = self._compute_hash(raw_wav, audio_padding_mask)
|
| 101 |
+
|
| 102 |
+
# Move tensors to CPU for storage
|
| 103 |
+
audio_embeds, audio_atts = value
|
| 104 |
+
cached_value = (audio_embeds.cpu(), audio_atts.cpu())
|
| 105 |
+
|
| 106 |
+
# Add to cache
|
| 107 |
+
self.cache[key] = cached_value
|
| 108 |
+
self.cache.move_to_end(key)
|
| 109 |
+
|
| 110 |
+
# Evict oldest if over capacity
|
| 111 |
+
if len(self.cache) > self.capacity:
|
| 112 |
+
self.cache.popitem(last=False)
|
| 113 |
+
|
| 114 |
+
def clear(self):
|
| 115 |
+
"""Clear the cache."""
|
| 116 |
+
self.cache.clear()
|
| 117 |
+
self.hits = 0
|
| 118 |
+
self.misses = 0
|
| 119 |
+
|
| 120 |
+
def get_stats(self):
|
| 121 |
+
"""Get cache statistics."""
|
| 122 |
+
total = self.hits + self.misses
|
| 123 |
+
hit_rate = self.hits / total if total > 0 else 0
|
| 124 |
+
return {
|
| 125 |
+
"hits": self.hits,
|
| 126 |
+
"misses": self.misses,
|
| 127 |
+
"hit_rate": hit_rate,
|
| 128 |
+
"size": len(self.cache),
|
| 129 |
+
"capacity": self.capacity,
|
| 130 |
+
}
|
| 131 |
|
|
|
|
| 132 |
|
| 133 |
class NatureLM(nn.Module, PyTorchModelHubMixin):
|
| 134 |
def __init__(
|
|
|
|
| 157 |
max_txt_len: int = 128,
|
| 158 |
end_sym: str = "</s>",
|
| 159 |
device: str = "cuda",
|
| 160 |
+
audio_encoding_cache_size: int = 100,
|
| 161 |
):
|
| 162 |
super().__init__()
|
| 163 |
|
| 164 |
+
self.audio_encoding_cache = (
|
| 165 |
+
AudioEncodingCache(capacity=audio_encoding_cache_size)
|
| 166 |
+
if audio_encoding_cache_size > 0
|
| 167 |
+
else None
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
self.beats_path = beats_path
|
| 171 |
self.beats_cfg = beats_cfg
|
| 172 |
self.use_audio_Qformer = use_audio_Qformer
|
|
|
|
| 183 |
|
| 184 |
logging.info(f"Llama path: {llama_path}")
|
| 185 |
logging.info("Loading Llama Tokenizer")
|
| 186 |
+
self.llama_tokenizer = AutoTokenizer.from_pretrained(
|
| 187 |
+
llama_path, use_fast=False, use_auth_token=auth_token
|
| 188 |
+
)
|
| 189 |
self.llama_tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
| 190 |
self.llama_tokenizer.padding_side = "right"
|
| 191 |
|
|
|
|
| 196 |
torch_dtype=torch.float32,
|
| 197 |
attn_implementation="eager",
|
| 198 |
device_map="cpu",
|
|
|
|
| 199 |
)
|
| 200 |
# An issue with tiny-llama is that pad_token_id was set to -1, but
|
| 201 |
# model.save_pretrained checks generation configs and does not allow -1 as
|
|
|
|
| 206 |
llama_path,
|
| 207 |
torch_dtype=torch.bfloat16,
|
| 208 |
attn_implementation=flash_attn,
|
|
|
|
| 209 |
)
|
| 210 |
|
| 211 |
self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
|
|
|
|
| 234 |
self.beats = BEATs(cfg=BEATsConfig(dict(self.beats_cfg)))
|
| 235 |
|
| 236 |
if self.beats_path:
|
| 237 |
+
beats_ckpt = universal_torch_load(
|
| 238 |
+
self.beats_path, cache_mode="none", map_location="cpu"
|
| 239 |
+
)
|
| 240 |
self.beats.load_state_dict(beats_ckpt["model"])
|
| 241 |
|
| 242 |
self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim)
|
|
|
|
| 437 |
audio_embeds = self.ln_audio(audio_embeds)
|
| 438 |
|
| 439 |
# Generate attention mask
|
| 440 |
+
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
|
| 441 |
+
audio_embeds.device
|
| 442 |
+
)
|
| 443 |
|
| 444 |
if self.window_level_Qformer:
|
| 445 |
B, T, C = audio_embeds.shape # batch, T, Channels
|
| 446 |
+
kernel = round(
|
| 447 |
+
1500 * self.second_per_window / 30.0
|
| 448 |
+
) # 160 ms patches; calculate kernel size
|
| 449 |
stride = round(1500 * self.second_stride / 30.0) # Calculate stride size
|
| 450 |
kernel = (1, kernel)
|
| 451 |
stride = (1, stride)
|
|
|
|
| 465 |
audio_embeds_overlap, [0, 3, 2, 1]
|
| 466 |
) # (B, num_windows, kernel_size, C)
|
| 467 |
audio_embeds = audio_embeds_overlap.reshape(-1, kernel[1], C)
|
| 468 |
+
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
|
| 469 |
+
audio_embeds.device
|
| 470 |
+
)
|
| 471 |
|
| 472 |
# Q-Former mechanism
|
| 473 |
query_tokens = self.audio_query_tokens.expand(audio_embeds.shape[0], -1, -1)
|
|
|
|
| 483 |
if self.window_level_Qformer:
|
| 484 |
audio_embeds = audio_embeds.view(B, -1, audio_embeds.size(2)).contiguous()
|
| 485 |
|
| 486 |
+
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
|
| 487 |
+
audio_embeds.device
|
| 488 |
+
)
|
| 489 |
|
| 490 |
elif self.htsat:
|
| 491 |
# HTSAT processing
|
| 492 |
audio_embeds = self.ln_audio(audio_embeds)
|
| 493 |
+
audio_embeds = self.audio_llama_proj(audio_embeds).reshape(
|
| 494 |
+
-1, 30, self.llama_model.config.hidden_size
|
| 495 |
+
)
|
| 496 |
+
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
|
| 497 |
+
audio_embeds.device
|
| 498 |
+
)
|
| 499 |
|
| 500 |
else:
|
| 501 |
raise NotImplementedError("no audio qformer or max pooling")
|
|
|
|
| 503 |
return audio_embeds, audio_atts
|
| 504 |
|
| 505 |
def encode_audio(self, raw_wav, audio_padding_mask=None):
|
| 506 |
+
# Only use cache during inference (not training)
|
| 507 |
+
if self.audio_encoding_cache is not None and not self.training:
|
| 508 |
+
cached_result = self.audio_encoding_cache.get(raw_wav, audio_padding_mask)
|
| 509 |
+
if cached_result is not None:
|
| 510 |
+
print("#### Audio encoding cache hit ####")
|
| 511 |
+
# Move cached tensors back to the model's device
|
| 512 |
+
audio_embeds, audio_atts = cached_result
|
| 513 |
+
return audio_embeds.to(self.device), audio_atts.to(self.device)
|
| 514 |
+
|
| 515 |
+
# Compute encoding if not cached
|
| 516 |
with torch.autocast(self.device.type, dtype=torch.bfloat16):
|
| 517 |
audio_embeds, audio_pad_mask = self.beats(raw_wav, padding_mask=audio_padding_mask)
|
| 518 |
+
result = self._encode_auditory_feature(
|
| 519 |
+
audio_embeds=audio_embeds, audio_pad_mask=audio_pad_mask
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
# Store in cache if enabled and in inference mode
|
| 523 |
+
if self.audio_encoding_cache is not None and not self.training:
|
| 524 |
+
self.audio_encoding_cache.put(raw_wav, audio_padding_mask, result)
|
| 525 |
+
|
| 526 |
+
return result
|
| 527 |
+
|
| 528 |
+
def clear_audio_embed_cache(self):
|
| 529 |
+
"""Clear the audio encoding cache."""
|
| 530 |
+
if self.audio_encoding_cache is not None:
|
| 531 |
+
self.audio_encoding_cache.clear()
|
| 532 |
|
| 533 |
def prompt_wrap(self, audio_embeds, audio_atts, prompt: list[str]):
|
| 534 |
"""Merge audio embeddings with embeddings of the tokens in the prompt.
|
|
|
|
| 576 |
wrapped_atts = []
|
| 577 |
|
| 578 |
for part in prompt_parts:
|
| 579 |
+
tokens = self.llama_tokenizer(
|
| 580 |
+
part, return_tensors="pt", add_special_tokens=False
|
| 581 |
+
).to(device)
|
| 582 |
part_embeds = self.llama_embed_tokens(tokens.input_ids).squeeze(0)
|
| 583 |
part_atts = tokens.attention_mask.squeeze(0)
|
| 584 |
wrapped_embeds.append(part_embeds)
|
|
|
|
| 644 |
|
| 645 |
# BOS token embeddings
|
| 646 |
bos_token_id = self.llama_tokenizer.bos_token_id
|
| 647 |
+
bos = torch.full(
|
| 648 |
+
(batch_size, 1), bos_token_id, dtype=torch.long, device=audio_embeds.device
|
| 649 |
+
)
|
| 650 |
bos_embeds = self.llama_embed_tokens(bos)
|
| 651 |
|
| 652 |
# Prepare lists to collect per-sample embeddings, attention masks, and targets
|
|
|
|
| 661 |
|
| 662 |
# Extract non-padded text embeddings and attention mask
|
| 663 |
text_embed = to_regress_embeds[i][to_regress_tokens.attention_mask[i].bool()]
|
| 664 |
+
text_att = to_regress_tokens.attention_mask[i][
|
| 665 |
+
to_regress_tokens.attention_mask[i].bool()
|
| 666 |
+
]
|
| 667 |
|
| 668 |
# Extract corresponding targets for the text tokens
|
| 669 |
target = targets[i][to_regress_tokens.attention_mask[i].bool()]
|
|
|
|
| 723 |
shift_logits.view(-1, nvocab), # Flatten to [batch_size * (seq_len-1), vocab_size]
|
| 724 |
shift_labels.view(-1), # Flatten to [batch_size * (seq_len-1)]
|
| 725 |
)
|
| 726 |
+
loss_per_token = loss_per_token.view(
|
| 727 |
+
shift_labels.size()
|
| 728 |
+
) # Reshape back to [batch_size, seq_len-1]
|
| 729 |
|
| 730 |
# Create mask
|
| 731 |
mask = shift_labels != -100 # [batch_size, seq_len-1]
|
|
|
|
| 741 |
predicted_tokens = shift_logits.argmax(dim=-1) # [batch_size, seq_len-1]
|
| 742 |
|
| 743 |
# Compute per-example correct counts
|
| 744 |
+
correct_per_sample = (
|
| 745 |
+
((predicted_tokens == shift_labels) & mask).sum(dim=1).float()
|
| 746 |
+
) # [batch_size]
|
| 747 |
total_tokens_per_sample = mask.sum(dim=1).float() # [batch_size]
|
| 748 |
|
| 749 |
# Total correct and total tokens across the batch
|
|
|
|
| 761 |
|
| 762 |
return {"loss": loss, "per_example_loss": loss_per_example}
|
| 763 |
|
| 764 |
+
def model_merging_scaling(self, merging_alpha, adapter_name="default"):
|
| 765 |
+
"""
|
| 766 |
+
Performs model merging with the base model by adjusting the scaling of the LoRA adapters as described in
|
| 767 |
+
"Model Merging Improves Zero-Shot Generalization in Bioacoustic Foundation Models"
|
| 768 |
+
(https://arxiv.org/abs/2511.05171).
|
| 769 |
+
|
| 770 |
+
The best value for alpha is task- and dataset-specific, but the paper found alpha values between
|
| 771 |
+
0.4 and 0.6 to perform generally well.
|
| 772 |
+
|
| 773 |
+
Args:
|
| 774 |
+
merging_alpha: The merging_alpha used for interpolation.
|
| 775 |
+
adapter_name (str): The name of the adapter to rescale when merging.
|
| 776 |
+
"""
|
| 777 |
+
|
| 778 |
+
for module in self.llama_model.modules():
|
| 779 |
+
# Check if the module is a LoRA layer and has the specified adapter
|
| 780 |
+
if hasattr(module, "r") and isinstance(module.r, dict) and adapter_name in module.r:
|
| 781 |
+
module.scaling[adapter_name] = merging_alpha * module.scaling[adapter_name]
|
| 782 |
+
|
| 783 |
@torch.inference_mode()
|
| 784 |
+
def generate(self, samples, generate_cfg, prompts) -> list[str]:
|
| 785 |
+
merging_alpha = getattr(generate_cfg, "merging_alpha", 1.0)
|
| 786 |
+
if merging_alpha != 1.0:
|
| 787 |
+
self.model_merging_scaling(merging_alpha)
|
| 788 |
+
|
| 789 |
batch_size = len(prompts)
|
| 790 |
|
| 791 |
raw_wav = samples["raw_wav"]
|
|
|
|
| 814 |
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
| 815 |
|
| 816 |
with torch.autocast(self.device.type, dtype=torch.bfloat16):
|
| 817 |
+
outputs = self.llama_model.generate( # TODO: Wrap the llama_model with outlines https://outlines-dev.github.io/outlines/reference/models/transformers/
|
| 818 |
inputs_embeds=embeds.bfloat16(),
|
| 819 |
max_new_tokens=generate_cfg.max_new_tokens,
|
| 820 |
stopping_criteria=stopping_criteria,
|
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import spaces
|
|
|
|
| 2 |
import warnings
|
| 3 |
import traceback
|
| 4 |
import numpy as np
|
|
@@ -17,19 +18,29 @@ from NatureLM.infer import Pipeline
|
|
| 17 |
|
| 18 |
from data_store import upload_data
|
| 19 |
|
|
|
|
| 20 |
warnings.filterwarnings("ignore")
|
| 21 |
SAMPLE_RATE = 16000 # Default sample rate for NatureLM-audio
|
| 22 |
DEVICE: str = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Load model at startup if CUDA is available
|
| 25 |
print(f"Device: {DEVICE}")
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def get_spectrogram(audio: torch.Tensor) -> plt.Figure:
|
| 35 |
"""Generate a spectrogram from the audio tensor."""
|
|
@@ -98,13 +109,11 @@ def prompt_lm(
|
|
| 98 |
hop_length_seconds: float = 10.0,
|
| 99 |
) -> list[str]:
|
| 100 |
"""Generate response using the model
|
| 101 |
-
|
| 102 |
Args:
|
| 103 |
audios (list[str]): List of audio file paths
|
| 104 |
queries (list[str] | str): Query or list of queries to process
|
| 105 |
window_length_seconds (float): Length of the window for processing audio
|
| 106 |
hop_length_seconds (float): Hop length for processing audio
|
| 107 |
-
|
| 108 |
Returns:
|
| 109 |
list[str]: List of generated responses for each audio-query pair
|
| 110 |
"""
|
|
@@ -157,28 +166,61 @@ def add_user_query(chatbot_history: list[dict], chat_input: str) -> list[dict]:
|
|
| 157 |
return chatbot_history
|
| 158 |
|
| 159 |
|
| 160 |
-
def send_data_to_hub(chatbot_history: list[dict], audio: str):
|
| 161 |
"""Upload data to hub"""
|
| 162 |
if not chatbot_history or len(chatbot_history) < 2:
|
| 163 |
return
|
| 164 |
user_text = chatbot_history[-2]["content"]
|
| 165 |
model_response = chatbot_history[-1]["content"]
|
| 166 |
-
upload_data(audio, user_text, model_response)
|
| 167 |
|
| 168 |
|
| 169 |
def get_response(chatbot_history: list[dict], audio_input: str) -> list[dict]:
|
| 170 |
-
"""Generate response from the model based on user input and audio file"""
|
| 171 |
try:
|
| 172 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
last_user_message = ""
|
| 174 |
for message in reversed(chatbot_history):
|
| 175 |
if message["role"] == "user":
|
| 176 |
last_user_message = message["content"]
|
| 177 |
break
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
response = prompt_lm(
|
| 180 |
audios=[audio_input],
|
| 181 |
-
queries=[
|
| 182 |
window_length_seconds=100_000,
|
| 183 |
hop_length_seconds=100_000,
|
| 184 |
)
|
|
@@ -192,7 +234,7 @@ def get_response(chatbot_history: list[dict], audio_input: str) -> list[dict]:
|
|
| 192 |
print(f"Error generating response: {e}")
|
| 193 |
traceback.print_exc()
|
| 194 |
response = "Error generating response. Please try again."
|
| 195 |
-
|
| 196 |
# Add model response to chat history
|
| 197 |
chatbot_history.append({"role": "assistant", "content": response})
|
| 198 |
|
|
@@ -201,17 +243,7 @@ def get_response(chatbot_history: list[dict], audio_input: str) -> list[dict]:
|
|
| 201 |
|
| 202 |
def main(
|
| 203 |
assets_dir: Path,
|
| 204 |
-
cfg_path: str | Path,
|
| 205 |
-
options: list[str] = [],
|
| 206 |
):
|
| 207 |
-
# Load configuration
|
| 208 |
-
try:
|
| 209 |
-
cfg = Config.from_sources(yaml_file=cfg_path, cli_args=options)
|
| 210 |
-
print("Configuration loaded successfully")
|
| 211 |
-
except Exception as e:
|
| 212 |
-
print(f"Warning: Could not load config: {e}")
|
| 213 |
-
print("Running in demo mode")
|
| 214 |
-
|
| 215 |
# Check if assets directory exists, if not create a placeholder
|
| 216 |
if not assets_dir.exists():
|
| 217 |
print(f"Warning: Assets directory {assets_dir} does not exist")
|
|
@@ -248,13 +280,11 @@ def main(
|
|
| 248 |
"Caption the audio (Humpback Whale)": [str(whale_audio), "Caption the audio."],
|
| 249 |
}
|
| 250 |
|
| 251 |
-
gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"])
|
| 252 |
|
| 253 |
with gr.Blocks(
|
| 254 |
title="NatureLM-audio",
|
| 255 |
-
theme=gr.themes.Base(
|
| 256 |
-
primary_hue="blue", font=[gr.themes.GoogleFont("Noto Sans")]
|
| 257 |
-
)
|
| 258 |
) as app:
|
| 259 |
with gr.Row():
|
| 260 |
gr.HTML("""
|
|
@@ -272,7 +302,8 @@ def main(
|
|
| 272 |
|
| 273 |
with gr.Tabs():
|
| 274 |
with gr.Tab("Analyze Audio"):
|
| 275 |
-
|
|
|
|
| 276 |
# Status indicator
|
| 277 |
# status_text = gr.Textbox(
|
| 278 |
# value=model_manager.get_status(),
|
|
@@ -297,8 +328,6 @@ def main(
|
|
| 297 |
""",
|
| 298 |
padding=False,
|
| 299 |
)
|
| 300 |
-
|
| 301 |
-
|
| 302 |
|
| 303 |
with gr.Column(visible=True) as upload_section:
|
| 304 |
audio_input = gr.Audio(
|
|
@@ -307,6 +336,14 @@ def main(
|
|
| 307 |
interactive=True,
|
| 308 |
sources=["upload"],
|
| 309 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
with gr.Accordion(
|
| 311 |
label="Toggle Spectrogram", open=False, visible=False
|
| 312 |
) as spectrogram:
|
|
@@ -445,13 +482,11 @@ def main(
|
|
| 445 |
[clear_button],
|
| 446 |
).then(
|
| 447 |
send_data_to_hub,
|
| 448 |
-
[chatbot, audio_input],
|
| 449 |
None,
|
| 450 |
)
|
| 451 |
|
| 452 |
-
clear_button.click(
|
| 453 |
-
lambda: gr.ClearButton(visible=False), None, [clear_button]
|
| 454 |
-
)
|
| 455 |
|
| 456 |
with gr.Tab("Sample Library"):
|
| 457 |
with gr.Row():
|
|
@@ -494,7 +529,6 @@ def main(
|
|
| 494 |
type="filepath",
|
| 495 |
show_download_button=True,
|
| 496 |
)
|
| 497 |
-
|
| 498 |
|
| 499 |
with gr.Tab("💡 Help"):
|
| 500 |
gr.HTML("""
|
|
@@ -519,7 +553,6 @@ def main(
|
|
| 519 |
</ol>
|
| 520 |
<p></p>
|
| 521 |
</div>
|
| 522 |
-
|
| 523 |
<div class="guide-section">
|
| 524 |
<h3>Tips</h3>
|
| 525 |
<b>Prompting Best Practices</b>
|
|
@@ -561,7 +594,6 @@ def main(
|
|
| 561 |
background: white;
|
| 562 |
flex: 1;
|
| 563 |
}
|
| 564 |
-
|
| 565 |
#chat-input .submit-button {
|
| 566 |
padding: 10px;
|
| 567 |
margin: 2px 6px;
|
|
@@ -590,7 +622,6 @@ def main(
|
|
| 590 |
color: #374151;
|
| 591 |
margin-bottom: 4px;
|
| 592 |
}
|
| 593 |
-
|
| 594 |
.banner .banner-text {
|
| 595 |
style="font-size: 14px;
|
| 596 |
color: #6b7280;
|
|
@@ -609,7 +640,6 @@ def main(
|
|
| 609 |
display: inline-block;
|
| 610 |
transition: background 0.2s ease;
|
| 611 |
}
|
| 612 |
-
|
| 613 |
.link-btn:hover {
|
| 614 |
background: #2563eb;
|
| 615 |
}
|
|
@@ -635,12 +665,10 @@ def main(
|
|
| 635 |
#chat-input {
|
| 636 |
background: #1e1e1e;
|
| 637 |
}
|
| 638 |
-
|
| 639 |
#chat-input textarea {
|
| 640 |
background: #1e1e1e;
|
| 641 |
color: white;
|
| 642 |
}
|
| 643 |
-
|
| 644 |
.banner {
|
| 645 |
background: #1e1e1e;
|
| 646 |
color: white;
|
|
@@ -657,8 +685,6 @@ def main(
|
|
| 657 |
# Create and launch the app
|
| 658 |
app = main(
|
| 659 |
assets_dir=Path("assets"),
|
| 660 |
-
cfg_path=Path("configs/inference.yml"),
|
| 661 |
-
options=[],
|
| 662 |
)
|
| 663 |
|
| 664 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import spaces
|
| 2 |
+
import uuid
|
| 3 |
import warnings
|
| 4 |
import traceback
|
| 5 |
import numpy as np
|
|
|
|
| 18 |
|
| 19 |
from data_store import upload_data
|
| 20 |
|
| 21 |
+
|
| 22 |
warnings.filterwarnings("ignore")
|
| 23 |
SAMPLE_RATE = 16000 # Default sample rate for NatureLM-audio
|
| 24 |
DEVICE: str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
+
MIN_AUDIO_DURATION: float = 0.5 # seconds
|
| 26 |
+
MAX_HISTORY_TURNS = (
|
| 27 |
+
3 # Maximum number of conversation turns to include in context (user + assistant pairs)
|
| 28 |
+
)
|
| 29 |
|
| 30 |
# Load model at startup if CUDA is available
|
| 31 |
print(f"Device: {DEVICE}")
|
| 32 |
+
model = NatureLM.from_pretrained("EarthSpeciesProject/NatureLM-audio")
|
| 33 |
+
model = model.eval().to(DEVICE)
|
| 34 |
+
model = Pipeline(model)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def check_audio_duration_greater(audio_path: str) -> bool:
|
| 38 |
+
"""Check the duration of the audio file."""
|
| 39 |
+
info = torchaudio.info(audio_path)
|
| 40 |
+
duration = info.num_frames / info.sample_rate
|
| 41 |
+
if not duration >= MIN_AUDIO_DURATION:
|
| 42 |
+
raise gr.Error(f"Audio duration must be at least {MIN_AUDIO_DURATION} seconds.")
|
| 43 |
+
|
| 44 |
|
| 45 |
def get_spectrogram(audio: torch.Tensor) -> plt.Figure:
|
| 46 |
"""Generate a spectrogram from the audio tensor."""
|
|
|
|
| 109 |
hop_length_seconds: float = 10.0,
|
| 110 |
) -> list[str]:
|
| 111 |
"""Generate response using the model
|
|
|
|
| 112 |
Args:
|
| 113 |
audios (list[str]): List of audio file paths
|
| 114 |
queries (list[str] | str): Query or list of queries to process
|
| 115 |
window_length_seconds (float): Length of the window for processing audio
|
| 116 |
hop_length_seconds (float): Hop length for processing audio
|
|
|
|
| 117 |
Returns:
|
| 118 |
list[str]: List of generated responses for each audio-query pair
|
| 119 |
"""
|
|
|
|
| 166 |
return chatbot_history
|
| 167 |
|
| 168 |
|
| 169 |
+
def send_data_to_hub(chatbot_history: list[dict], audio: str, session_id: str):
|
| 170 |
"""Upload data to hub"""
|
| 171 |
if not chatbot_history or len(chatbot_history) < 2:
|
| 172 |
return
|
| 173 |
user_text = chatbot_history[-2]["content"]
|
| 174 |
model_response = chatbot_history[-1]["content"]
|
| 175 |
+
upload_data(audio, user_text, model_response, session_id)
|
| 176 |
|
| 177 |
|
| 178 |
def get_response(chatbot_history: list[dict], audio_input: str) -> list[dict]:
|
| 179 |
+
"""Generate response from the model based on user input and audio file with conversation history"""
|
| 180 |
try:
|
| 181 |
+
# Warn if conversation is getting long
|
| 182 |
+
num_turns = len(chatbot_history)
|
| 183 |
+
if num_turns > MAX_HISTORY_TURNS * 2: # Each turn = user + assistant message
|
| 184 |
+
gr.Warning(
|
| 185 |
+
"⚠️ Long conversations may affect response quality. Consider starting a new conversation with the Clear button."
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# Build conversation context from history
|
| 189 |
+
conversation_context = []
|
| 190 |
+
for message in chatbot_history:
|
| 191 |
+
if message["role"] == "user":
|
| 192 |
+
conversation_context.append(f"User: {message['content']}")
|
| 193 |
+
elif message["role"] == "assistant":
|
| 194 |
+
conversation_context.append(f"Assistant: {message['content']}")
|
| 195 |
+
|
| 196 |
+
# Get the last user message
|
| 197 |
last_user_message = ""
|
| 198 |
for message in reversed(chatbot_history):
|
| 199 |
if message["role"] == "user":
|
| 200 |
last_user_message = message["content"]
|
| 201 |
break
|
| 202 |
+
|
| 203 |
+
# Format the full prompt with conversation history
|
| 204 |
+
if len(conversation_context) > 2: # More than just the current query
|
| 205 |
+
# Include previous turns (limit to last MAX_HISTORY_TURNS exchanges)
|
| 206 |
+
recent_context = conversation_context[
|
| 207 |
+
-(MAX_HISTORY_TURNS + 1) : -1
|
| 208 |
+
] # Exclude current message
|
| 209 |
+
|
| 210 |
+
full_prompt = (
|
| 211 |
+
"Previous conversation:\n"
|
| 212 |
+
+ "\n".join(recent_context)
|
| 213 |
+
+ "\n\nCurrent question: "
|
| 214 |
+
+ last_user_message
|
| 215 |
+
)
|
| 216 |
+
else:
|
| 217 |
+
full_prompt = last_user_message
|
| 218 |
+
|
| 219 |
+
print("\nFull prompt with history:", full_prompt)
|
| 220 |
+
|
| 221 |
response = prompt_lm(
|
| 222 |
audios=[audio_input],
|
| 223 |
+
queries=[full_prompt.strip()],
|
| 224 |
window_length_seconds=100_000,
|
| 225 |
hop_length_seconds=100_000,
|
| 226 |
)
|
|
|
|
| 234 |
print(f"Error generating response: {e}")
|
| 235 |
traceback.print_exc()
|
| 236 |
response = "Error generating response. Please try again."
|
| 237 |
+
|
| 238 |
# Add model response to chat history
|
| 239 |
chatbot_history.append({"role": "assistant", "content": response})
|
| 240 |
|
|
|
|
| 243 |
|
| 244 |
def main(
|
| 245 |
assets_dir: Path,
|
|
|
|
|
|
|
| 246 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
# Check if assets directory exists, if not create a placeholder
|
| 248 |
if not assets_dir.exists():
|
| 249 |
print(f"Warning: Assets directory {assets_dir} does not exist")
|
|
|
|
| 280 |
"Caption the audio (Humpback Whale)": [str(whale_audio), "Caption the audio."],
|
| 281 |
}
|
| 282 |
|
| 283 |
+
gr.set_static_paths(paths=[Path.cwd().absolute() / "assets"])
|
| 284 |
|
| 285 |
with gr.Blocks(
|
| 286 |
title="NatureLM-audio",
|
| 287 |
+
theme=gr.themes.Base(primary_hue="blue", font=[gr.themes.GoogleFont("Noto Sans")]),
|
|
|
|
|
|
|
| 288 |
) as app:
|
| 289 |
with gr.Row():
|
| 290 |
gr.HTML("""
|
|
|
|
| 302 |
|
| 303 |
with gr.Tabs():
|
| 304 |
with gr.Tab("Analyze Audio"):
|
| 305 |
+
session_id = gr.State(str(uuid.uuid4()))
|
| 306 |
+
# uploaded_audio = gr.State()
|
| 307 |
# Status indicator
|
| 308 |
# status_text = gr.Textbox(
|
| 309 |
# value=model_manager.get_status(),
|
|
|
|
| 328 |
""",
|
| 329 |
padding=False,
|
| 330 |
)
|
|
|
|
|
|
|
| 331 |
|
| 332 |
with gr.Column(visible=True) as upload_section:
|
| 333 |
audio_input = gr.Audio(
|
|
|
|
| 336 |
interactive=True,
|
| 337 |
sources=["upload"],
|
| 338 |
)
|
| 339 |
+
# check that audio duration is greater than MIN_AUDIO_DURATION
|
| 340 |
+
# raise
|
| 341 |
+
audio_input.change(
|
| 342 |
+
fn=check_audio_duration_greater,
|
| 343 |
+
inputs=[audio_input],
|
| 344 |
+
outputs=[],
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
with gr.Accordion(
|
| 348 |
label="Toggle Spectrogram", open=False, visible=False
|
| 349 |
) as spectrogram:
|
|
|
|
| 482 |
[clear_button],
|
| 483 |
).then(
|
| 484 |
send_data_to_hub,
|
| 485 |
+
[chatbot, audio_input, session_id],
|
| 486 |
None,
|
| 487 |
)
|
| 488 |
|
| 489 |
+
clear_button.click(lambda: gr.ClearButton(visible=False), None, [clear_button])
|
|
|
|
|
|
|
| 490 |
|
| 491 |
with gr.Tab("Sample Library"):
|
| 492 |
with gr.Row():
|
|
|
|
| 529 |
type="filepath",
|
| 530 |
show_download_button=True,
|
| 531 |
)
|
|
|
|
| 532 |
|
| 533 |
with gr.Tab("💡 Help"):
|
| 534 |
gr.HTML("""
|
|
|
|
| 553 |
</ol>
|
| 554 |
<p></p>
|
| 555 |
</div>
|
|
|
|
| 556 |
<div class="guide-section">
|
| 557 |
<h3>Tips</h3>
|
| 558 |
<b>Prompting Best Practices</b>
|
|
|
|
| 594 |
background: white;
|
| 595 |
flex: 1;
|
| 596 |
}
|
|
|
|
| 597 |
#chat-input .submit-button {
|
| 598 |
padding: 10px;
|
| 599 |
margin: 2px 6px;
|
|
|
|
| 622 |
color: #374151;
|
| 623 |
margin-bottom: 4px;
|
| 624 |
}
|
|
|
|
| 625 |
.banner .banner-text {
|
| 626 |
style="font-size: 14px;
|
| 627 |
color: #6b7280;
|
|
|
|
| 640 |
display: inline-block;
|
| 641 |
transition: background 0.2s ease;
|
| 642 |
}
|
|
|
|
| 643 |
.link-btn:hover {
|
| 644 |
background: #2563eb;
|
| 645 |
}
|
|
|
|
| 665 |
#chat-input {
|
| 666 |
background: #1e1e1e;
|
| 667 |
}
|
|
|
|
| 668 |
#chat-input textarea {
|
| 669 |
background: #1e1e1e;
|
| 670 |
color: white;
|
| 671 |
}
|
|
|
|
| 672 |
.banner {
|
| 673 |
background: #1e1e1e;
|
| 674 |
color: white;
|
|
|
|
| 685 |
# Create and launch the app
|
| 686 |
app = main(
|
| 687 |
assets_dir=Path("assets"),
|
|
|
|
|
|
|
| 688 |
)
|
| 689 |
|
| 690 |
if __name__ == "__main__":
|
configs/inference.yml
CHANGED
|
@@ -59,3 +59,4 @@ generate:
|
|
| 59 |
temperature: 0.1
|
| 60 |
repetition_penalty: 1.0
|
| 61 |
length_penalty: 1.0
|
|
|
|
|
|
| 59 |
temperature: 0.1
|
| 60 |
repetition_penalty: 1.0
|
| 61 |
length_penalty: 1.0
|
| 62 |
+
merging_alpha: 0.5
|
data_store.py
CHANGED
|
@@ -7,33 +7,38 @@ from huggingface_hub import HfApi, HfFileSystem
|
|
| 7 |
DATASET_REPO = "EarthSpeciesProject/naturelm-audio-space-logs"
|
| 8 |
SPLIT = "test"
|
| 9 |
TESTING = os.getenv("TESTING", "0") == "1"
|
| 10 |
-
api = HfApi(token=os.getenv("HF_TOKEN",None))
|
| 11 |
# Upload audio
|
| 12 |
# check if file exists
|
| 13 |
-
hf_fs = HfFileSystem(token=os.getenv("HF_TOKEN",None))
|
| 14 |
|
| 15 |
|
| 16 |
-
def upload_data(audio: str | Path, user_text: str, model_response: str):
|
| 17 |
data_id = str(uuid.uuid4())
|
|
|
|
| 18 |
if TESTING:
|
| 19 |
data_id = "test-" + data_id
|
|
|
|
|
|
|
| 20 |
# Audio path in repo
|
| 21 |
suffix = Path(audio).suffix
|
| 22 |
-
audio_p = f"{SPLIT}/audio/" +
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
text = {
|
| 32 |
"user_message": user_text,
|
| 33 |
"model_response": model_response,
|
| 34 |
-
"file_name": "audio/" +
|
| 35 |
"original_fn": os.path.basename(audio),
|
| 36 |
"id": data_id,
|
|
|
|
| 37 |
}
|
| 38 |
|
| 39 |
# Append to a jsonl file in the repo
|
|
|
|
| 7 |
DATASET_REPO = "EarthSpeciesProject/naturelm-audio-space-logs"
|
| 8 |
SPLIT = "test"
|
| 9 |
TESTING = os.getenv("TESTING", "0") == "1"
|
| 10 |
+
api = HfApi(token=os.getenv("HF_TOKEN", None))
|
| 11 |
# Upload audio
|
| 12 |
# check if file exists
|
| 13 |
+
hf_fs = HfFileSystem(token=os.getenv("HF_TOKEN", None))
|
| 14 |
|
| 15 |
|
| 16 |
+
def upload_data(audio: str | Path, user_text: str, model_response: str, session_id: str = ""):
|
| 17 |
data_id = str(uuid.uuid4())
|
| 18 |
+
|
| 19 |
if TESTING:
|
| 20 |
data_id = "test-" + data_id
|
| 21 |
+
session_id = "test-" + session_id
|
| 22 |
+
|
| 23 |
# Audio path in repo
|
| 24 |
suffix = Path(audio).suffix
|
| 25 |
+
audio_p = f"{SPLIT}/audio/" + session_id + suffix
|
| 26 |
|
| 27 |
+
if not hf_fs.exists(f"datasets/{DATASET_REPO}/{audio_p}"):
|
| 28 |
+
api.upload_file(
|
| 29 |
+
path_or_fileobj=str(audio),
|
| 30 |
+
path_in_repo=audio_p,
|
| 31 |
+
repo_id=DATASET_REPO,
|
| 32 |
+
repo_type="dataset",
|
| 33 |
+
)
|
| 34 |
|
| 35 |
text = {
|
| 36 |
"user_message": user_text,
|
| 37 |
"model_response": model_response,
|
| 38 |
+
"file_name": "audio/" + session_id + suffix, # has to be relative to metadata.jsonl
|
| 39 |
"original_fn": os.path.basename(audio),
|
| 40 |
"id": data_id,
|
| 41 |
+
"session_id": session_id,
|
| 42 |
}
|
| 43 |
|
| 44 |
# Append to a jsonl file in the repo
|