Merge branch 'feature/add_steps_display' into feature/graph_recommandation
Browse files- app.py +177 -187
- sandbox/20240310 - CQA - Semantic Routing 1.ipynb +0 -0
- style.css +18 -2
- test.json +0 -0
app.py
CHANGED
|
@@ -15,6 +15,8 @@ import time
|
|
| 15 |
import re
|
| 16 |
import json
|
| 17 |
|
|
|
|
|
|
|
| 18 |
# from gradio_modal import Modal
|
| 19 |
|
| 20 |
from io import BytesIO
|
|
@@ -121,10 +123,8 @@ async def chat(query,history,audience,sources,reports,current_graphs):
|
|
| 121 |
reports = []
|
| 122 |
|
| 123 |
inputs = {"user_input": query,"audience": audience_prompt,"sources":sources}
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
# result = rag_chain.stream(inputs)
|
| 127 |
-
|
| 128 |
# path_reformulation = "/logs/reformulation/final_output"
|
| 129 |
# path_keywords = "/logs/keywords/final_output"
|
| 130 |
# path_retriever = "/logs/find_documents/final_output"
|
|
@@ -146,130 +146,166 @@ async def chat(query,history,audience,sources,reports,current_graphs):
|
|
| 146 |
"transform_query":("🔄️ Thinking step by step to answer the question",True),
|
| 147 |
"retrieve_documents":("🔄️ Searching in the knowledge base",False),
|
| 148 |
}
|
| 149 |
-
|
|
|
|
|
|
|
| 150 |
try:
|
| 151 |
async for event in result:
|
| 152 |
|
| 153 |
-
if event["event"] == "on_chat_model_stream" and event["metadata"]["langgraph_node"] in ["answer_rag", "answer_rag_no_docs", "answer_chitchat", "answer_ai_impact"]:
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
elif docs_used is True and event["name"] == "retrieve_documents" and event["event"] == "on_chain_end":
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
# elif event["name"] == "retrieve_documents" and event["event"] == "on_chain_start":
|
| 182 |
-
# print(event)
|
| 183 |
-
# questions = event["data"]["input"]["questions"]
|
| 184 |
-
# questions = "\n".join([f"{i+1}. {q['question']} ({q['source']})" for i,q in enumerate(questions)])
|
| 185 |
-
# answer_yet = "🔄️ Searching in the knowledge base\n{questions}"
|
| 186 |
-
# history[-1] = (query,answer_yet)
|
| 187 |
-
|
| 188 |
-
elif event["name"] in ["retrieve_graphs", "retrieve_graphs_ai"] and event["event"] == "on_chain_end":
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
|
| 235 |
-
except Exception as e:
|
| 236 |
-
print(f"Error getting graphs: {e}")
|
| 237 |
-
|
| 238 |
-
for event_name,(event_description,display_output) in steps_display.items():
|
| 239 |
-
if event["name"] == event_name:
|
| 240 |
-
if event["event"] == "on_chain_start":
|
| 241 |
-
# answer_yet = f"<p><span class='loader'></span>{event_description}</p>"
|
| 242 |
-
# answer_yet = make_toolbox(event_description, "", checked = False)
|
| 243 |
-
answer_yet = event_description
|
| 244 |
-
|
| 245 |
-
history[-1] = (query,answer_yet)
|
| 246 |
-
# elif event["event"] == "on_chain_end":
|
| 247 |
-
# answer_yet = ""
|
| 248 |
-
# history[-1] = (query,answer_yet)
|
| 249 |
-
# if display_output:
|
| 250 |
-
# print(event["data"]["output"])
|
| 251 |
-
|
| 252 |
-
# if op['path'] == path_reformulation: # reforulated question
|
| 253 |
-
# try:
|
| 254 |
-
# output_language = op['value']["language"] # str
|
| 255 |
-
# output_query = op["value"]["question"]
|
| 256 |
# except Exception as e:
|
| 257 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
# if op["path"] == path_keywords:
|
| 260 |
-
# try:
|
| 261 |
-
# output_keywords = op['value']["keywords"] # str
|
| 262 |
-
# output_keywords = " AND ".join(output_keywords)
|
| 263 |
-
# except Exception as e:
|
| 264 |
-
# pass
|
| 265 |
|
| 266 |
|
| 267 |
|
| 268 |
-
history = [tuple(x) for x in history]
|
| 269 |
-
yield history,docs_html,output_query,output_language,gallery,current_graphs #,output_query,output_keywords
|
| 270 |
|
| 271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
except Exception as e:
|
|
|
|
| 273 |
raise gr.Error(f"{e}")
|
| 274 |
|
| 275 |
|
|
@@ -330,23 +366,24 @@ async def chat(query,history,audience,sources,reports,current_graphs):
|
|
| 330 |
history[-1] = (history[-1][0],answer_yet)
|
| 331 |
history = [tuple(x) for x in history]
|
| 332 |
|
| 333 |
-
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
|
| 340 |
-
|
| 341 |
|
| 342 |
|
| 343 |
|
| 344 |
-
# else:
|
| 345 |
-
# docs_string = "No relevant passages found in the climate science reports (IPCC and IPBES)"
|
| 346 |
-
# complete_response = "**No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
|
| 347 |
-
# messages.append({"role": "assistant", "content": complete_response})
|
| 348 |
-
# gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
| 349 |
-
# yield gradio_format, messages, docs_string
|
|
|
|
| 350 |
|
| 351 |
|
| 352 |
def save_feedback(feed: str, user_id):
|
|
@@ -392,56 +429,6 @@ papers_cols_widths = {
|
|
| 392 |
papers_cols = list(papers_cols_widths.keys())
|
| 393 |
papers_cols_widths = list(papers_cols_widths.values())
|
| 394 |
|
| 395 |
-
# async def find_papers(query, keywords,after):
|
| 396 |
-
|
| 397 |
-
# summary = ""
|
| 398 |
-
|
| 399 |
-
# df_works = oa.search(keywords,after = after)
|
| 400 |
-
# df_works = df_works.dropna(subset=["abstract"])
|
| 401 |
-
# df_works = oa.rerank(query,df_works,reranker)
|
| 402 |
-
# df_works = df_works.sort_values("rerank_score",ascending=False)
|
| 403 |
-
# G = oa.make_network(df_works)
|
| 404 |
-
|
| 405 |
-
# height = "750px"
|
| 406 |
-
# network = oa.show_network(G,color_by = "rerank_score",notebook=False,height = height)
|
| 407 |
-
# network_html = network.generate_html()
|
| 408 |
-
|
| 409 |
-
# network_html = network_html.replace("'", "\"")
|
| 410 |
-
# css_to_inject = "<style>#mynetwork { border: none !important; } .card { border: none !important; }</style>"
|
| 411 |
-
# network_html = network_html + css_to_inject
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
# network_html = f"""<iframe style="width: 100%; height: {height};margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
|
| 415 |
-
# display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
| 416 |
-
# allow-scripts allow-same-origin allow-popups
|
| 417 |
-
# allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
| 418 |
-
# allowpaymentrequest="" frameborder="0" srcdoc='{network_html}'></iframe>"""
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
# docs = df_works["content"].head(15).tolist()
|
| 422 |
-
|
| 423 |
-
# df_works = df_works.reset_index(drop = True).reset_index().rename(columns = {"index":"doc"})
|
| 424 |
-
# df_works["doc"] = df_works["doc"] + 1
|
| 425 |
-
# df_works = df_works[papers_cols]
|
| 426 |
-
|
| 427 |
-
# yield df_works,network_html,summary
|
| 428 |
-
|
| 429 |
-
# chain = make_rag_papers_chain(llm)
|
| 430 |
-
# result = chain.astream_log({"question": query,"docs": docs,"language":"English"})
|
| 431 |
-
# path_answer = "/logs/StrOutputParser/streamed_output/-"
|
| 432 |
-
|
| 433 |
-
# async for op in result:
|
| 434 |
-
|
| 435 |
-
# op = op.ops[0]
|
| 436 |
-
|
| 437 |
-
# if op['path'] == path_answer: # reforulated question
|
| 438 |
-
# new_token = op['value'] # str
|
| 439 |
-
# summary += new_token
|
| 440 |
-
# else:
|
| 441 |
-
# continue
|
| 442 |
-
# yield df_works,network_html,summary
|
| 443 |
-
|
| 444 |
-
|
| 445 |
|
| 446 |
# --------------------------------------------------------------------
|
| 447 |
# Gradio
|
|
@@ -478,23 +465,28 @@ def save_graph(saved_graphs_state, embedding, category):
|
|
| 478 |
return saved_graphs_state, gr.Button("Graph Saved")
|
| 479 |
|
| 480 |
|
| 481 |
-
with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main-component") as demo:
|
| 482 |
-
|
| 483 |
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
|
|
|
| 487 |
|
| 488 |
with gr.Tab("ClimateQ&A"):
|
| 489 |
|
| 490 |
with gr.Row(elem_id="chatbot-row"):
|
| 491 |
with gr.Column(scale=2):
|
| 492 |
-
state = gr.State([system_template])
|
| 493 |
chatbot = gr.Chatbot(
|
| 494 |
-
value=[(
|
| 495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
|
| 497 |
-
)
|
| 498 |
|
| 499 |
# bot.like(vote,None,None)
|
| 500 |
|
|
@@ -502,8 +494,7 @@ with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main
|
|
| 502 |
|
| 503 |
with gr.Row(elem_id = "input-message"):
|
| 504 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
|
| 505 |
-
|
| 506 |
-
|
| 507 |
|
| 508 |
with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
|
| 509 |
|
|
@@ -685,8 +676,9 @@ with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main
|
|
| 685 |
|
| 686 |
|
| 687 |
def start_chat(query,history):
|
| 688 |
-
history = history + [(query,None)]
|
| 689 |
-
history = [tuple(x) for x in history]
|
|
|
|
| 690 |
return (gr.update(interactive = False),gr.update(selected=1),history)
|
| 691 |
|
| 692 |
def finish_chat():
|
|
@@ -722,8 +714,6 @@ with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main
|
|
| 722 |
|
| 723 |
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
|
| 724 |
|
| 725 |
-
# query_papers.submit(generate_keywords,[query_papers], [keywords_papers])
|
| 726 |
-
# search_papers.click(find_papers,[query_papers,keywords_papers,after], [papers_dataframe,citations_network,papers_summary])
|
| 727 |
|
| 728 |
demo.queue()
|
| 729 |
|
|
|
|
| 15 |
import re
|
| 16 |
import json
|
| 17 |
|
| 18 |
+
from gradio import ChatMessage
|
| 19 |
+
|
| 20 |
# from gradio_modal import Modal
|
| 21 |
|
| 22 |
from io import BytesIO
|
|
|
|
| 123 |
reports = []
|
| 124 |
|
| 125 |
inputs = {"user_input": query,"audience": audience_prompt,"sources":sources}
|
| 126 |
+
result = agent.astream_events(inputs,version = "v1")
|
| 127 |
+
|
|
|
|
|
|
|
| 128 |
# path_reformulation = "/logs/reformulation/final_output"
|
| 129 |
# path_keywords = "/logs/keywords/final_output"
|
| 130 |
# path_retriever = "/logs/find_documents/final_output"
|
|
|
|
| 146 |
"transform_query":("🔄️ Thinking step by step to answer the question",True),
|
| 147 |
"retrieve_documents":("🔄️ Searching in the knowledge base",False),
|
| 148 |
}
|
| 149 |
+
|
| 150 |
+
used_documents = []
|
| 151 |
+
answer_message_content = ""
|
| 152 |
try:
|
| 153 |
async for event in result:
|
| 154 |
|
| 155 |
+
# if event["event"] == "on_chat_model_stream" and event["metadata"]["langgraph_node"] in ["answer_rag", "answer_rag_no_docs", "answer_chitchat", "answer_ai_impact"]:
|
| 156 |
+
# if start_streaming == False:
|
| 157 |
+
# start_streaming = True
|
| 158 |
+
# history[-1] = (query,"")
|
| 159 |
+
if "langgraph_node" in event["metadata"]:
|
| 160 |
+
node = event["metadata"]["langgraph_node"]
|
| 161 |
+
|
| 162 |
+
if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents" :# when documents are retrieved
|
| 163 |
+
try:
|
| 164 |
+
docs = event["data"]["output"]["documents"]
|
| 165 |
+
docs_html = []
|
| 166 |
+
for i, d in enumerate(docs, 1):
|
| 167 |
+
docs_html.append(make_html_source(d, i))
|
| 168 |
+
|
| 169 |
+
used_documents = used_documents + [d.metadata["name"] for d in docs]
|
| 170 |
+
history[-1].content = "Adding sources :\n\n - " + "\n - ".join(np.unique(used_documents))
|
| 171 |
+
|
| 172 |
+
docs_html = "".join(docs_html)
|
| 173 |
+
|
| 174 |
+
except Exception as e:
|
| 175 |
+
print(f"Error getting documents: {e}")
|
| 176 |
+
print(event)
|
| 177 |
+
|
| 178 |
+
elif event["name"] in steps_display.keys() and event["event"] == "on_chain_start": #display steps
|
| 179 |
+
event_description,display_output = steps_display[node]
|
| 180 |
+
if not hasattr(history[-1], 'metadata') or history[-1].metadata["title"] != event_description: # if a new step begins
|
| 181 |
+
history.append(ChatMessage(role="assistant", content = "", metadata={'title' :event_description}))
|
| 182 |
+
|
| 183 |
+
elif event["name"] != "transform_query" and event["event"] == "on_chat_model_stream" and node in ["answer_rag", "answer_search"]:# if streaming answer
|
| 184 |
+
if start_streaming == False:
|
| 185 |
+
start_streaming = True
|
| 186 |
+
history.append(ChatMessage(role="assistant", content = ""))
|
| 187 |
+
answer_message_content += event["data"]["chunk"].content
|
| 188 |
+
answer_message_content = parse_output_llm_with_sources(answer_message_content)
|
| 189 |
+
history[-1] = ChatMessage(role="assistant", content = answer_message_content)
|
| 190 |
+
# history.append(ChatMessage(role="assistant", content = new_message_content))
|
| 191 |
+
|
| 192 |
+
# if docs_used is True and event["metadata"]["langgraph_node"] in ["answer_rag_no_docs", "answer_chitchat", "answer_ai_impact"]:
|
| 193 |
+
# docs_used = False
|
| 194 |
|
| 195 |
+
# elif docs_used is True and event["name"] == "retrieve_documents" and event["event"] == "on_chain_end":
|
| 196 |
+
# try:
|
| 197 |
+
# docs = event["data"]["output"]["documents"]
|
| 198 |
+
# docs_html = []
|
| 199 |
+
# for i, d in enumerate(docs, 1):
|
| 200 |
+
# docs_html.append(make_html_source(d, i))
|
| 201 |
+
# docs_html = "".join(docs_html)
|
| 202 |
+
|
| 203 |
+
# except Exception as e:
|
| 204 |
+
# print(f"Error getting documents: {e}")
|
| 205 |
+
# print(event)
|
| 206 |
+
|
| 207 |
+
# # elif event["name"] == "retrieve_documents" and event["event"] == "on_chain_start":
|
| 208 |
+
# # print(event)
|
| 209 |
+
# # questions = event["data"]["input"]["questions"]
|
| 210 |
+
# # questions = "\n".join([f"{i+1}. {q['question']} ({q['source']})" for i,q in enumerate(questions)])
|
| 211 |
+
# # answer_yet = "🔄️ Searching in the knowledge base\n{questions}"
|
| 212 |
+
# # history[-1] = (query,answer_yet)
|
| 213 |
+
|
| 214 |
+
# elif event["name"] in ["retrieve_graphs", "retrieve_graphs_ai"] and event["event"] == "on_chain_end":
|
| 215 |
+
# try:
|
| 216 |
+
# recommended_content = event["data"]["output"]["recommended_content"]
|
| 217 |
+
# # graphs = [
|
| 218 |
+
# # {
|
| 219 |
+
# # "embedding": x.metadata["returned_content"],
|
| 220 |
+
# # "metadata": {
|
| 221 |
+
# # "source": x.metadata["source"],
|
| 222 |
+
# # "category": x.metadata["category"]
|
| 223 |
+
# # }
|
| 224 |
+
# # } for x in recommended_content if x.metadata["source"] == "OWID"
|
| 225 |
+
# # ]
|
| 226 |
|
| 227 |
+
# unique_graphs = []
|
| 228 |
+
# seen_embeddings = set()
|
| 229 |
|
| 230 |
+
# for x in recommended_content:
|
| 231 |
+
# embedding = x.metadata["returned_content"]
|
| 232 |
|
| 233 |
+
# # Check if the embedding has already been seen
|
| 234 |
+
# if embedding not in seen_embeddings:
|
| 235 |
+
# unique_graphs.append({
|
| 236 |
+
# "embedding": embedding,
|
| 237 |
+
# "metadata": {
|
| 238 |
+
# "source": x.metadata["source"],
|
| 239 |
+
# "category": x.metadata["category"]
|
| 240 |
+
# }
|
| 241 |
+
# })
|
| 242 |
+
# # Add the embedding to the seen set
|
| 243 |
+
# seen_embeddings.add(embedding)
|
| 244 |
|
| 245 |
|
| 246 |
+
# categories = {}
|
| 247 |
+
# for graph in unique_graphs:
|
| 248 |
+
# category = graph['metadata']['category']
|
| 249 |
+
# if category not in categories:
|
| 250 |
+
# categories[category] = []
|
| 251 |
+
# categories[category].append(graph['embedding'])
|
| 252 |
+
|
| 253 |
+
# # graphs_html = ""
|
| 254 |
+
# for category, embeddings in categories.items():
|
| 255 |
+
# # graphs_html += f"<h3>{category}</h3>"
|
| 256 |
+
# # current_graphs.append(f"<h3>{category}</h3>")
|
| 257 |
+
# for embedding in embeddings:
|
| 258 |
+
# current_graphs.append([embedding, category])
|
| 259 |
+
# # graphs_html += f"<div>{embedding}</div>"
|
| 260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
# except Exception as e:
|
| 262 |
+
# print(f"Error getting graphs: {e}")
|
| 263 |
+
|
| 264 |
+
# for event_name,(event_description,display_output) in steps_display.items():
|
| 265 |
+
# if event["name"] == event_name:
|
| 266 |
+
# if event["event"] == "on_chain_start":
|
| 267 |
+
# # answer_yet = f"<p><span class='loader'></span>{event_description}</p>"
|
| 268 |
+
# # answer_yet = make_toolbox(event_description, "", checked = False)
|
| 269 |
+
# answer_yet = event_description
|
| 270 |
+
|
| 271 |
+
# history[-1] = (query,answer_yet)
|
| 272 |
+
# # elif event["event"] == "on_chain_end":
|
| 273 |
+
# # answer_yet = ""
|
| 274 |
+
# # history[-1] = (query,answer_yet)
|
| 275 |
+
# # if display_output:
|
| 276 |
+
# # print(event["data"]["output"])
|
| 277 |
+
|
| 278 |
+
# # if op['path'] == path_reformulation: # reforulated question
|
| 279 |
+
# # try:
|
| 280 |
+
# # output_language = op['value']["language"] # str
|
| 281 |
+
# # output_query = op["value"]["question"]
|
| 282 |
+
# # except Exception as e:
|
| 283 |
+
# # raise gr.Error(f"ClimateQ&A Error: {e} - The error has been noted, try another question and if the error remains, you can contact us :)")
|
| 284 |
|
| 285 |
+
# # if op["path"] == path_keywords:
|
| 286 |
+
# # try:
|
| 287 |
+
# # output_keywords = op['value']["keywords"] # str
|
| 288 |
+
# # output_keywords = " AND ".join(output_keywords)
|
| 289 |
+
# # except Exception as e:
|
| 290 |
+
# # pass
|
| 291 |
|
| 292 |
|
| 293 |
|
| 294 |
+
# history = [tuple(x) for x in history]
|
| 295 |
+
# yield history,docs_html,output_query,output_language,gallery,current_graphs #,output_query,output_keywords
|
| 296 |
|
| 297 |
|
| 298 |
+
if event["name"] == "transform_query" and event["event"] =="on_chain_end":
|
| 299 |
+
if hasattr(history[-1],"content"):
|
| 300 |
+
history[-1].content += "Decompose question into sub-questions: \n\n - " + "\n - ".join([q["question"] for q in event["data"]["output"]["remaining_questions"]])
|
| 301 |
+
|
| 302 |
+
if event["name"] == "categorize_intent" and event["event"] == "on_chain_start":
|
| 303 |
+
print("X")
|
| 304 |
+
|
| 305 |
+
yield history,docs_html,output_query,output_language,gallery #,output_query,output_keywords
|
| 306 |
+
|
| 307 |
except Exception as e:
|
| 308 |
+
print(event, "has failed")
|
| 309 |
raise gr.Error(f"{e}")
|
| 310 |
|
| 311 |
|
|
|
|
| 366 |
history[-1] = (history[-1][0],answer_yet)
|
| 367 |
history = [tuple(x) for x in history]
|
| 368 |
|
| 369 |
+
# print(f"\n\nImages:\n{gallery}")
|
| 370 |
|
| 371 |
+
# # gallery = [x.metadata["image_path"] for x in docs if (len(x.metadata["image_path"]) > 0 and "IAS" in x.metadata["image_path"])]
|
| 372 |
+
# # if len(gallery) > 0:
|
| 373 |
+
# # gallery = list(set("|".join(gallery).split("|")))
|
| 374 |
+
# # gallery = [get_image_from_azure_blob_storage(x) for x in gallery]
|
| 375 |
|
| 376 |
+
# yield history,docs_html,output_query,output_language,gallery,current_graphs #,output_query,output_keywords
|
| 377 |
|
| 378 |
|
| 379 |
|
| 380 |
+
# # else:
|
| 381 |
+
# # docs_string = "No relevant passages found in the climate science reports (IPCC and IPBES)"
|
| 382 |
+
# # complete_response = "**No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
|
| 383 |
+
# # messages.append({"role": "assistant", "content": complete_response})
|
| 384 |
+
# # gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
| 385 |
+
# # yield gradio_format, messages, docs_string
|
| 386 |
+
yield history,docs_html,output_query,output_language,gallery#,output_query,output_keywords
|
| 387 |
|
| 388 |
|
| 389 |
def save_feedback(feed: str, user_id):
|
|
|
|
| 429 |
papers_cols = list(papers_cols_widths.keys())
|
| 430 |
papers_cols_widths = list(papers_cols_widths.values())
|
| 431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
|
| 433 |
# --------------------------------------------------------------------
|
| 434 |
# Gradio
|
|
|
|
| 465 |
return saved_graphs_state, gr.Button("Graph Saved")
|
| 466 |
|
| 467 |
|
| 468 |
+
# with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main-component") as demo:
|
| 469 |
+
# user_id_state = gr.State([user_id])
|
| 470 |
|
| 471 |
+
# chat_completed_state = gr.State(0)
|
| 472 |
+
# current_graphs = gr.State([])
|
| 473 |
+
# saved_graphs = gr.State({})
|
| 474 |
+
with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=theme,elem_id = "main-component") as demo:
|
| 475 |
|
| 476 |
with gr.Tab("ClimateQ&A"):
|
| 477 |
|
| 478 |
with gr.Row(elem_id="chatbot-row"):
|
| 479 |
with gr.Column(scale=2):
|
| 480 |
+
# state = gr.State([system_template])
|
| 481 |
chatbot = gr.Chatbot(
|
| 482 |
+
value = [ChatMessage(role="assistant", content=init_prompt)],
|
| 483 |
+
type = "messages",
|
| 484 |
+
show_copy_button=True,
|
| 485 |
+
show_label = False,
|
| 486 |
+
elem_id="chatbot",
|
| 487 |
+
layout = "panel",
|
| 488 |
avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
|
| 489 |
+
)
|
| 490 |
|
| 491 |
# bot.like(vote,None,None)
|
| 492 |
|
|
|
|
| 494 |
|
| 495 |
with gr.Row(elem_id = "input-message"):
|
| 496 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
|
| 497 |
+
|
|
|
|
| 498 |
|
| 499 |
with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
|
| 500 |
|
|
|
|
| 676 |
|
| 677 |
|
| 678 |
def start_chat(query,history):
|
| 679 |
+
# history = history + [(query,None)]
|
| 680 |
+
# history = [tuple(x) for x in history]
|
| 681 |
+
history = history + [ChatMessage(role="user", content=query)]
|
| 682 |
return (gr.update(interactive = False),gr.update(selected=1),history)
|
| 683 |
|
| 684 |
def finish_chat():
|
|
|
|
| 714 |
|
| 715 |
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
|
| 716 |
|
|
|
|
|
|
|
| 717 |
|
| 718 |
demo.queue()
|
| 719 |
|
sandbox/20240310 - CQA - Semantic Routing 1.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
style.css
CHANGED
|
@@ -2,6 +2,14 @@
|
|
| 2 |
/* :root {
|
| 3 |
--user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
|
| 4 |
} */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
.warning-box {
|
| 7 |
background-color: #fff3cd;
|
|
@@ -57,6 +65,7 @@ body.dark .tip-box * {
|
|
| 57 |
|
| 58 |
.message{
|
| 59 |
font-size:14px !important;
|
|
|
|
| 60 |
}
|
| 61 |
|
| 62 |
|
|
@@ -65,6 +74,10 @@ a {
|
|
| 65 |
color: inherit;
|
| 66 |
}
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
.card {
|
| 69 |
background-color: white;
|
| 70 |
border-radius: 10px;
|
|
@@ -426,7 +439,7 @@ span.chatbot > p > img{
|
|
| 426 |
|
| 427 |
.loader {
|
| 428 |
border: 1px solid #d0d0d0 !important; /* Light grey background */
|
| 429 |
-
border-top: 1px solid #
|
| 430 |
border-right: 1px solid #3498db !important; /* Blue color */
|
| 431 |
border-radius: 50%;
|
| 432 |
width: 20px;
|
|
@@ -492,4 +505,7 @@ div#tab-saved-graphs {
|
|
| 492 |
max-height: 50vh; /* Reduce height for smaller screens */
|
| 493 |
overflow-y: auto;
|
| 494 |
}
|
| 495 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
/* :root {
|
| 3 |
--user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
|
| 4 |
} */
|
| 5 |
+
.avatar-container.svelte-1x5p6hu:not(.thumbnail-item) img {
|
| 6 |
+
width: 100%;
|
| 7 |
+
height: 100%;
|
| 8 |
+
object-fit: cover;
|
| 9 |
+
border-radius: 50%;
|
| 10 |
+
padding: 0px;
|
| 11 |
+
margin: 0px;
|
| 12 |
+
}
|
| 13 |
|
| 14 |
.warning-box {
|
| 15 |
background-color: #fff3cd;
|
|
|
|
| 65 |
|
| 66 |
.message{
|
| 67 |
font-size:14px !important;
|
| 68 |
+
|
| 69 |
}
|
| 70 |
|
| 71 |
|
|
|
|
| 74 |
color: inherit;
|
| 75 |
}
|
| 76 |
|
| 77 |
+
.doc-ref sup{
|
| 78 |
+
color:#dc2626!important;
|
| 79 |
+
/* margin-right:1px; */
|
| 80 |
+
}
|
| 81 |
.card {
|
| 82 |
background-color: white;
|
| 83 |
border-radius: 10px;
|
|
|
|
| 439 |
|
| 440 |
.loader {
|
| 441 |
border: 1px solid #d0d0d0 !important; /* Light grey background */
|
| 442 |
+
border-top: 1px solid #db3434 !important; /* Blue color */
|
| 443 |
border-right: 1px solid #3498db !important; /* Blue color */
|
| 444 |
border-radius: 50%;
|
| 445 |
width: 20px;
|
|
|
|
| 505 |
max-height: 50vh; /* Reduce height for smaller screens */
|
| 506 |
overflow-y: auto;
|
| 507 |
}
|
| 508 |
+
}
|
| 509 |
+
.message-buttons-left.panel.message-buttons.with-avatar {
|
| 510 |
+
display: none;
|
| 511 |
+
}
|
test.json
ADDED
|
File without changes
|