Spaces:
Running
Running
Refactor for Hugging Face Spaces: Remove Redis/Celery, add standalone mode
Browse files- Dockerfile +8 -2
- app.py +41 -56
- tasks.py +13 -30
Dockerfile
CHANGED
|
@@ -13,5 +13,11 @@ COPY . /app
|
|
| 13 |
ENV PYTHONUNBUFFERED=1
|
| 14 |
ENV PYTHONDONTWRITEBYTECODE=1
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
ENV PYTHONUNBUFFERED=1
|
| 14 |
ENV PYTHONDONTWRITEBYTECODE=1
|
| 15 |
|
| 16 |
+
# Create directories with permissions
|
| 17 |
+
RUN mkdir -p /tmp/uploads /tmp/results && chmod 777 /tmp/uploads /tmp/results
|
| 18 |
+
|
| 19 |
+
# Expose Hugging Face default port
|
| 20 |
+
EXPOSE 7860
|
| 21 |
+
|
| 22 |
+
# Start the application
|
| 23 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
|
@@ -1,55 +1,39 @@
|
|
| 1 |
-
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 2 |
from fastapi.responses import FileResponse, JSONResponse
|
| 3 |
from uuid import uuid4
|
| 4 |
from pathlib import Path
|
| 5 |
import shutil
|
| 6 |
import os
|
| 7 |
import json
|
| 8 |
-
import redis
|
| 9 |
-
from celery import Celery
|
| 10 |
from dotenv import load_dotenv
|
|
|
|
| 11 |
|
| 12 |
load_dotenv()
|
| 13 |
|
| 14 |
-
# Directories
|
| 15 |
-
|
| 16 |
-
|
|
|
|
| 17 |
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
| 18 |
RESULT_DIR.mkdir(parents=True, exist_ok=True)
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
CELERY_BROKER_URL = os.environ.get("CELERY_BROKER_URL", "redis://redis:6379/0")
|
| 24 |
|
| 25 |
-
|
| 26 |
-
_rdb = None
|
| 27 |
-
_celery_client = None
|
| 28 |
-
|
| 29 |
-
def get_redis():
|
| 30 |
-
global _rdb
|
| 31 |
-
if _rdb is None:
|
| 32 |
-
_rdb = redis.Redis(host=REDIS_HOST, port=REDIS_PORT, db=0, decode_responses=True)
|
| 33 |
-
return _rdb
|
| 34 |
-
|
| 35 |
-
def get_celery():
|
| 36 |
-
global _celery_client
|
| 37 |
-
if _celery_client is None:
|
| 38 |
-
_celery_client = Celery(broker=CELERY_BROKER_URL)
|
| 39 |
-
return _celery_client
|
| 40 |
-
|
| 41 |
-
app = FastAPI(title="Depth->STL processing service (API)")
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def set_status(job_id: str, state: str, detail: str = "", result: str = ""):
|
| 45 |
-
payload = {"state": state, "detail": detail, "result": result}
|
| 46 |
-
get_redis().set(job_id, json.dumps(payload))
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
@app.post("/upload/")
|
| 50 |
-
async def upload_image(file: UploadFile = File(...
|
| 51 |
# Basic validation
|
| 52 |
-
if not file.content_type.
|
| 53 |
raise HTTPException(status_code=400, detail="File must be an image")
|
| 54 |
|
| 55 |
job_id = str(uuid4())
|
|
@@ -57,46 +41,47 @@ async def upload_image(file: UploadFile = File(... )):
|
|
| 57 |
fname = f"{job_id}_{safe_name}"
|
| 58 |
save_path = UPLOAD_DIR / fname
|
| 59 |
|
| 60 |
-
# Save uploaded file
|
| 61 |
try:
|
| 62 |
with save_path.open("wb") as buffer:
|
| 63 |
shutil.copyfileobj(file.file, buffer)
|
| 64 |
except Exception as e:
|
| 65 |
raise HTTPException(status_code=500, detail=f"Failed to save upload: {e}")
|
| 66 |
|
| 67 |
-
# Mark queued
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
raise HTTPException(status_code=500, detail=f"Failed to enqueue task: {e}")
|
| 79 |
|
| 80 |
-
return {"job_id": job_id
|
| 81 |
|
| 82 |
|
| 83 |
@app.get("/status/{job_id}")
|
| 84 |
def status(job_id: str):
|
| 85 |
-
|
| 86 |
-
if not
|
| 87 |
return JSONResponse({"state": "UNKNOWN", "detail": "No such job_id"}, status_code=404)
|
| 88 |
-
return JSONResponse(
|
| 89 |
|
| 90 |
|
| 91 |
@app.get("/download/{job_id}")
|
| 92 |
def download(job_id: str):
|
| 93 |
-
|
| 94 |
-
if not
|
| 95 |
raise HTTPException(status_code=404, detail="No such job")
|
| 96 |
-
|
| 97 |
-
if
|
| 98 |
raise HTTPException(status_code=404, detail="Result not ready")
|
| 99 |
-
|
|
|
|
| 100 |
if not stl_path or not Path(stl_path).exists():
|
| 101 |
raise HTTPException(status_code=404, detail="Result file missing")
|
|
|
|
| 102 |
return FileResponse(path=stl_path, filename=Path(stl_path).name, media_type="application/sla")
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
|
| 2 |
from fastapi.responses import FileResponse, JSONResponse
|
| 3 |
from uuid import uuid4
|
| 4 |
from pathlib import Path
|
| 5 |
import shutil
|
| 6 |
import os
|
| 7 |
import json
|
|
|
|
|
|
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
+
from tasks import process_image_task
|
| 10 |
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
+
# Directories
|
| 14 |
+
# Use /tmp for Hugging Face Spaces as it is writable
|
| 15 |
+
UPLOAD_DIR = Path("/tmp/uploads")
|
| 16 |
+
RESULT_DIR = Path("/tmp/results")
|
| 17 |
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
| 18 |
RESULT_DIR.mkdir(parents=True, exist_ok=True)
|
| 19 |
|
| 20 |
+
# In-memory job store (Global variable)
|
| 21 |
+
# Since HF Spaces (Free) runs 1 replica, this works for a demo.
|
| 22 |
+
JOBS = {}
|
|
|
|
| 23 |
|
| 24 |
+
app = FastAPI(title="Depth->STL processing service (Standalone)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
def update_job_status(job_id: str, state: str, detail: str = "", result: str = ""):
|
| 27 |
+
JOBS[job_id] = {
|
| 28 |
+
"state": state,
|
| 29 |
+
"detail": detail,
|
| 30 |
+
"result": result
|
| 31 |
+
}
|
| 32 |
|
| 33 |
@app.post("/upload/")
|
| 34 |
+
async def upload_image(background_tasks: BackgroundTasks, file: UploadFile = File(...)):
|
| 35 |
# Basic validation
|
| 36 |
+
if not file.content_type.startswith("image/"):
|
| 37 |
raise HTTPException(status_code=400, detail="File must be an image")
|
| 38 |
|
| 39 |
job_id = str(uuid4())
|
|
|
|
| 41 |
fname = f"{job_id}_{safe_name}"
|
| 42 |
save_path = UPLOAD_DIR / fname
|
| 43 |
|
| 44 |
+
# Save uploaded file
|
| 45 |
try:
|
| 46 |
with save_path.open("wb") as buffer:
|
| 47 |
shutil.copyfileobj(file.file, buffer)
|
| 48 |
except Exception as e:
|
| 49 |
raise HTTPException(status_code=500, detail=f"Failed to save upload: {e}")
|
| 50 |
|
| 51 |
+
# Mark queued
|
| 52 |
+
update_job_status(job_id, "QUEUED", "Job received and queued")
|
| 53 |
+
|
| 54 |
+
# Add to background tasks
|
| 55 |
+
background_tasks.add_task(
|
| 56 |
+
process_image_task,
|
| 57 |
+
str(save_path),
|
| 58 |
+
str(RESULT_DIR),
|
| 59 |
+
job_id,
|
| 60 |
+
update_job_status
|
| 61 |
+
)
|
|
|
|
| 62 |
|
| 63 |
+
return {"job_id": job_id}
|
| 64 |
|
| 65 |
|
| 66 |
@app.get("/status/{job_id}")
|
| 67 |
def status(job_id: str):
|
| 68 |
+
job = JOBS.get(job_id)
|
| 69 |
+
if not job:
|
| 70 |
return JSONResponse({"state": "UNKNOWN", "detail": "No such job_id"}, status_code=404)
|
| 71 |
+
return JSONResponse(job)
|
| 72 |
|
| 73 |
|
| 74 |
@app.get("/download/{job_id}")
|
| 75 |
def download(job_id: str):
|
| 76 |
+
job = JOBS.get(job_id)
|
| 77 |
+
if not job:
|
| 78 |
raise HTTPException(status_code=404, detail="No such job")
|
| 79 |
+
|
| 80 |
+
if job.get("state") != "SUCCESS":
|
| 81 |
raise HTTPException(status_code=404, detail="Result not ready")
|
| 82 |
+
|
| 83 |
+
stl_path = job.get("result")
|
| 84 |
if not stl_path or not Path(stl_path).exists():
|
| 85 |
raise HTTPException(status_code=404, detail="Result file missing")
|
| 86 |
+
|
| 87 |
return FileResponse(path=stl_path, filename=Path(stl_path).name, media_type="application/sla")
|
tasks.py
CHANGED
|
@@ -1,9 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
-
from celery import Celery
|
| 3 |
from pathlib import Path
|
| 4 |
import traceback
|
| 5 |
import json
|
| 6 |
-
import redis
|
| 7 |
import time
|
| 8 |
import sys
|
| 9 |
|
|
@@ -11,24 +9,17 @@ import numpy as np
|
|
| 11 |
import cv2
|
| 12 |
import open3d as o3d
|
| 13 |
import torch
|
| 14 |
-
from PIL import Image
|
| 15 |
import trimesh
|
| 16 |
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
REDIS_HOST = os.environ.get("REDIS_HOST", "redis")
|
| 22 |
-
REDIS_PORT = int(os.environ.get("REDIS_PORT", 6379))
|
| 23 |
-
|
| 24 |
-
# Pipeline settings (fixed to orthographic + Poisson depth=9 to match your notebook)
|
| 25 |
-
DEPTH_CHECKPOINT = os.environ.get("DEPTH_CHECKPOINT", "/models/depth-anything-Large-hf")
|
| 26 |
-
USE_GPU = int(os.environ.get("USE_GPU", "1"))
|
| 27 |
POISSON_DEPTH = int(os.environ.get("POISSON_DEPTH", "9"))
|
| 28 |
OUTLIER_NEIGHBORS = int(os.environ.get("OUTLIER_NEIGHBORS", "15"))
|
| 29 |
OUTLIER_STD_RATIO = float(os.environ.get("OUTLIER_STD_RATIO", "1.0"))
|
| 30 |
-
ORTHO_SCALE_FACTOR = float(os.environ.get("ORTHO_SCALE_FACTOR", "255"))
|
| 31 |
-
INFERENCE_RESIZE = int(os.environ.get("INFERENCE_RESIZE", "0"))
|
| 32 |
RESULT_PREFIX = os.environ.get("RESULT_PREFIX", "")
|
| 33 |
|
| 34 |
try:
|
|
@@ -36,9 +27,6 @@ try:
|
|
| 36 |
except Exception:
|
| 37 |
pass
|
| 38 |
|
| 39 |
-
celery = Celery("tasks", broker=CELERY_BROKER, backend=CELERY_BACKEND)
|
| 40 |
-
rdb = redis.Redis(host=REDIS_HOST, port=REDIS_PORT, db=0, decode_responses=True)
|
| 41 |
-
|
| 42 |
_model = None
|
| 43 |
_processor = None
|
| 44 |
_device = "cpu"
|
|
@@ -47,10 +35,6 @@ def log(msg):
|
|
| 47 |
print(msg, flush=True)
|
| 48 |
sys.stdout.flush()
|
| 49 |
|
| 50 |
-
def set_status(job_id: str, state: str, detail: str = "", result: str = ""):
|
| 51 |
-
payload = {"state": state, "detail": detail, "result": result}
|
| 52 |
-
rdb.set(job_id, json.dumps(payload))
|
| 53 |
-
|
| 54 |
def load_model():
|
| 55 |
global _model, _processor, _device
|
| 56 |
if _model is None:
|
|
@@ -85,11 +69,10 @@ def build_orthographic_point_cloud(depth_u8: np.ndarray, color_rgb: np.ndarray)
|
|
| 85 |
pcd.colors = o3d.utility.Vector3dVector(colors)
|
| 86 |
return pcd
|
| 87 |
|
| 88 |
-
|
| 89 |
-
def process_image_task(self, image_path: str, result_dir: str, job_id: str):
|
| 90 |
start = time.time()
|
| 91 |
try:
|
| 92 |
-
|
| 93 |
model, processor, device = load_model()
|
| 94 |
log(f"[{job_id}] Model loaded on {device}")
|
| 95 |
|
|
@@ -108,7 +91,7 @@ def process_image_task(self, image_path: str, result_dir: str, job_id: str):
|
|
| 108 |
else:
|
| 109 |
img_proc = img_rgb
|
| 110 |
|
| 111 |
-
|
| 112 |
depth_inputs = processor(images=img_proc, return_tensors="pt").to(device)
|
| 113 |
with torch.no_grad():
|
| 114 |
outputs = model(**depth_inputs)
|
|
@@ -120,7 +103,7 @@ def process_image_task(self, image_path: str, result_dir: str, job_id: str):
|
|
| 120 |
|
| 121 |
depth_u8 = normalize_depth_uint8(depth)
|
| 122 |
|
| 123 |
-
|
| 124 |
pcd = build_orthographic_point_cloud(depth_u8, color_resized)
|
| 125 |
|
| 126 |
# Outlier removal (nb=15, std_ratio=1.0)
|
|
@@ -144,7 +127,7 @@ def process_image_task(self, image_path: str, result_dir: str, job_id: str):
|
|
| 144 |
if num_pts == 0:
|
| 145 |
raise RuntimeError("Empty point cloud after cleanup")
|
| 146 |
|
| 147 |
-
|
| 148 |
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
| 149 |
pcd, depth=POISSON_DEPTH
|
| 150 |
)
|
|
@@ -165,14 +148,14 @@ def process_image_task(self, image_path: str, result_dir: str, job_id: str):
|
|
| 165 |
Path(result_dir).mkdir(parents=True, exist_ok=True)
|
| 166 |
stl_path = Path(result_dir) / f"{RESULT_PREFIX}{job_id}.stl"
|
| 167 |
|
| 168 |
-
|
| 169 |
tm = trimesh.Trimesh(vertices=np.asarray(mesh.vertices),
|
| 170 |
faces=np.asarray(mesh.triangles),
|
| 171 |
process=True)
|
| 172 |
tm.export(str(stl_path), file_type="stl")
|
| 173 |
|
| 174 |
total = time.time() - start
|
| 175 |
-
|
| 176 |
log(f"[{job_id}] SUCCESS total={total:.2f}s STL={stl_path}")
|
| 177 |
return {
|
| 178 |
"status": "success",
|
|
@@ -181,6 +164,6 @@ def process_image_task(self, image_path: str, result_dir: str, job_id: str):
|
|
| 181 |
}
|
| 182 |
except Exception as e:
|
| 183 |
traceback.print_exc()
|
| 184 |
-
|
| 185 |
log(f"[{job_id}] FAILURE: {e}")
|
| 186 |
raise
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
from pathlib import Path
|
| 3 |
import traceback
|
| 4 |
import json
|
|
|
|
| 5 |
import time
|
| 6 |
import sys
|
| 7 |
|
|
|
|
| 9 |
import cv2
|
| 10 |
import open3d as o3d
|
| 11 |
import torch
|
|
|
|
| 12 |
import trimesh
|
| 13 |
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
| 14 |
|
| 15 |
+
# Pipeline settings
|
| 16 |
+
DEPTH_CHECKPOINT = os.environ.get("DEPTH_CHECKPOINT", "LiheYoung/depth-anything-large-hf") # Default to HF Hub model if local not found
|
| 17 |
+
USE_GPU = int(os.environ.get("USE_GPU", "0")) # Default to CPU for HF Spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
POISSON_DEPTH = int(os.environ.get("POISSON_DEPTH", "9"))
|
| 19 |
OUTLIER_NEIGHBORS = int(os.environ.get("OUTLIER_NEIGHBORS", "15"))
|
| 20 |
OUTLIER_STD_RATIO = float(os.environ.get("OUTLIER_STD_RATIO", "1.0"))
|
| 21 |
+
ORTHO_SCALE_FACTOR = float(os.environ.get("ORTHO_SCALE_FACTOR", "255"))
|
| 22 |
+
INFERENCE_RESIZE = int(os.environ.get("INFERENCE_RESIZE", "0"))
|
| 23 |
RESULT_PREFIX = os.environ.get("RESULT_PREFIX", "")
|
| 24 |
|
| 25 |
try:
|
|
|
|
| 27 |
except Exception:
|
| 28 |
pass
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
_model = None
|
| 31 |
_processor = None
|
| 32 |
_device = "cpu"
|
|
|
|
| 35 |
print(msg, flush=True)
|
| 36 |
sys.stdout.flush()
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def load_model():
|
| 39 |
global _model, _processor, _device
|
| 40 |
if _model is None:
|
|
|
|
| 69 |
pcd.colors = o3d.utility.Vector3dVector(colors)
|
| 70 |
return pcd
|
| 71 |
|
| 72 |
+
def process_image_task(image_path: str, result_dir: str, job_id: str, status_callback):
|
|
|
|
| 73 |
start = time.time()
|
| 74 |
try:
|
| 75 |
+
status_callback(job_id, "RUNNING", "Loading model")
|
| 76 |
model, processor, device = load_model()
|
| 77 |
log(f"[{job_id}] Model loaded on {device}")
|
| 78 |
|
|
|
|
| 91 |
else:
|
| 92 |
img_proc = img_rgb
|
| 93 |
|
| 94 |
+
status_callback(job_id, "RUNNING", "Running depth inference")
|
| 95 |
depth_inputs = processor(images=img_proc, return_tensors="pt").to(device)
|
| 96 |
with torch.no_grad():
|
| 97 |
outputs = model(**depth_inputs)
|
|
|
|
| 103 |
|
| 104 |
depth_u8 = normalize_depth_uint8(depth)
|
| 105 |
|
| 106 |
+
status_callback(job_id, "RUNNING", "Building orthographic point cloud")
|
| 107 |
pcd = build_orthographic_point_cloud(depth_u8, color_resized)
|
| 108 |
|
| 109 |
# Outlier removal (nb=15, std_ratio=1.0)
|
|
|
|
| 127 |
if num_pts == 0:
|
| 128 |
raise RuntimeError("Empty point cloud after cleanup")
|
| 129 |
|
| 130 |
+
status_callback(job_id, "RUNNING", f"Poisson reconstruction depth={POISSON_DEPTH}")
|
| 131 |
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
| 132 |
pcd, depth=POISSON_DEPTH
|
| 133 |
)
|
|
|
|
| 148 |
Path(result_dir).mkdir(parents=True, exist_ok=True)
|
| 149 |
stl_path = Path(result_dir) / f"{RESULT_PREFIX}{job_id}.stl"
|
| 150 |
|
| 151 |
+
status_callback(job_id, "RUNNING", "Exporting STL")
|
| 152 |
tm = trimesh.Trimesh(vertices=np.asarray(mesh.vertices),
|
| 153 |
faces=np.asarray(mesh.triangles),
|
| 154 |
process=True)
|
| 155 |
tm.export(str(stl_path), file_type="stl")
|
| 156 |
|
| 157 |
total = time.time() - start
|
| 158 |
+
status_callback(job_id, "SUCCESS", f"Done in {total:.2f}s", str(stl_path))
|
| 159 |
log(f"[{job_id}] SUCCESS total={total:.2f}s STL={stl_path}")
|
| 160 |
return {
|
| 161 |
"status": "success",
|
|
|
|
| 164 |
}
|
| 165 |
except Exception as e:
|
| 166 |
traceback.print_exc()
|
| 167 |
+
status_callback(job_id, "FAILURE", str(e))
|
| 168 |
log(f"[{job_id}] FAILURE: {e}")
|
| 169 |
raise
|