Spaces:
Build error
Build error
| import torch | |
| from transformers import pipeline | |
| import gradio as gr | |
| import os | |
| MODEL_NAME = "HarshitJoshi/whisper-small-Hindi" | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| device=device, | |
| ) | |
| def transcribe_speech(filepath): | |
| output = pipe( | |
| filepath, | |
| max_new_tokens=256, | |
| generate_kwargs={ | |
| "task": "transcribe", | |
| "language": "hindi", | |
| }, | |
| chunk_length_s=10, | |
| batch_size=4, | |
| ) | |
| return output["text"] | |
| example_folder = "./examples" | |
| demo = gr.Interface( | |
| fn=transcribe_speech, | |
| inputs=gr.Audio(label="Audio Input", type="filepath"), | |
| outputs=gr.Textbox(label="Transcription"), | |
| title="Hindi Speech Transcription", | |
| description=( | |
| "Upload an audio file or record using your microphone to transcribe Hindi speech." | |
| ), | |
| examples=example_folder, | |
| cache_examples=True, | |
| allow_flagging="never", | |
| ) | |
| demo.launch(debug=True) |