Spaces:
Sleeping
Sleeping
Create new file
Browse files- inference.py +186 -0
inference.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import onnxruntime
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
class_names = [100, 120, 20, 30, 40, 15, 50, 60, 70, 80]
|
| 7 |
+
def preprocess(img, input_size, swap=(2, 0, 1)):
|
| 8 |
+
if len(img.shape) == 3:
|
| 9 |
+
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
| 10 |
+
else:
|
| 11 |
+
padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
| 12 |
+
|
| 13 |
+
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
| 14 |
+
resized_img = cv2.resize(
|
| 15 |
+
img,
|
| 16 |
+
(int(img.shape[1] * r), int(img.shape[0] * r)),
|
| 17 |
+
interpolation=cv2.INTER_LINEAR,
|
| 18 |
+
).astype(np.uint8)
|
| 19 |
+
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
| 20 |
+
|
| 21 |
+
padded_img = padded_img.transpose(swap)
|
| 22 |
+
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
| 23 |
+
return padded_img, r
|
| 24 |
+
|
| 25 |
+
def nms(boxes, scores, nms_thr):
|
| 26 |
+
"""Single class NMS implemented in Numpy."""
|
| 27 |
+
x1 = boxes[:, 0]
|
| 28 |
+
y1 = boxes[:, 1]
|
| 29 |
+
x2 = boxes[:, 2]
|
| 30 |
+
y2 = boxes[:, 3]
|
| 31 |
+
|
| 32 |
+
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
| 33 |
+
order = scores.argsort()[::-1]
|
| 34 |
+
|
| 35 |
+
keep = []
|
| 36 |
+
while order.size > 0:
|
| 37 |
+
i = order[0]
|
| 38 |
+
keep.append(i)
|
| 39 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
| 40 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
| 41 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
| 42 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
| 43 |
+
|
| 44 |
+
w = np.maximum(0.0, xx2 - xx1 + 1)
|
| 45 |
+
h = np.maximum(0.0, yy2 - yy1 + 1)
|
| 46 |
+
inter = w * h
|
| 47 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
| 48 |
+
|
| 49 |
+
inds = np.where(ovr <= nms_thr)[0]
|
| 50 |
+
order = order[inds + 1]
|
| 51 |
+
|
| 52 |
+
return keep
|
| 53 |
+
|
| 54 |
+
def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
|
| 55 |
+
"""Multiclass NMS implemented in Numpy"""
|
| 56 |
+
if class_agnostic:
|
| 57 |
+
nms_method = multiclass_nms_class_agnostic
|
| 58 |
+
else:
|
| 59 |
+
nms_method = multiclass_nms_class_aware
|
| 60 |
+
return nms_method(boxes, scores, nms_thr, score_thr)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
|
| 64 |
+
"""Multiclass NMS implemented in Numpy. Class-aware version."""
|
| 65 |
+
final_dets = []
|
| 66 |
+
num_classes = scores.shape[1]
|
| 67 |
+
for cls_ind in range(num_classes):
|
| 68 |
+
cls_scores = scores[:, cls_ind]
|
| 69 |
+
valid_score_mask = cls_scores > score_thr
|
| 70 |
+
if valid_score_mask.sum() == 0:
|
| 71 |
+
continue
|
| 72 |
+
else:
|
| 73 |
+
valid_scores = cls_scores[valid_score_mask]
|
| 74 |
+
valid_boxes = boxes[valid_score_mask]
|
| 75 |
+
keep = nms(valid_boxes, valid_scores, nms_thr)
|
| 76 |
+
if len(keep) > 0:
|
| 77 |
+
cls_inds = np.ones((len(keep), 1)) * cls_ind
|
| 78 |
+
dets = np.concatenate(
|
| 79 |
+
[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
|
| 80 |
+
)
|
| 81 |
+
final_dets.append(dets)
|
| 82 |
+
if len(final_dets) == 0:
|
| 83 |
+
return None
|
| 84 |
+
return np.concatenate(final_dets, 0)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
|
| 88 |
+
"""Multiclass NMS implemented in Numpy. Class-agnostic version."""
|
| 89 |
+
cls_inds = scores.argmax(1)
|
| 90 |
+
cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
|
| 91 |
+
|
| 92 |
+
valid_score_mask = cls_scores > score_thr
|
| 93 |
+
if valid_score_mask.sum() == 0:
|
| 94 |
+
return None
|
| 95 |
+
valid_scores = cls_scores[valid_score_mask]
|
| 96 |
+
valid_boxes = boxes[valid_score_mask]
|
| 97 |
+
valid_cls_inds = cls_inds[valid_score_mask]
|
| 98 |
+
keep = nms(valid_boxes, valid_scores, nms_thr)
|
| 99 |
+
if keep:
|
| 100 |
+
dets = np.concatenate(
|
| 101 |
+
[valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
|
| 102 |
+
)
|
| 103 |
+
return dets
|
| 104 |
+
|
| 105 |
+
def demo_postprocess(outputs, img_size, p6=False):
|
| 106 |
+
|
| 107 |
+
grids = []
|
| 108 |
+
expanded_strides = []
|
| 109 |
+
|
| 110 |
+
if not p6:
|
| 111 |
+
strides = [8, 16, 32]
|
| 112 |
+
else:
|
| 113 |
+
strides = [8, 16, 32, 64]
|
| 114 |
+
|
| 115 |
+
hsizes = [img_size[0] // stride for stride in strides]
|
| 116 |
+
wsizes = [img_size[1] // stride for stride in strides]
|
| 117 |
+
|
| 118 |
+
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
| 119 |
+
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
| 120 |
+
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
| 121 |
+
grids.append(grid)
|
| 122 |
+
shape = grid.shape[:2]
|
| 123 |
+
expanded_strides.append(np.full((*shape, 1), stride))
|
| 124 |
+
|
| 125 |
+
grids = np.concatenate(grids, 1)
|
| 126 |
+
expanded_strides = np.concatenate(expanded_strides, 1)
|
| 127 |
+
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
| 128 |
+
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
| 129 |
+
|
| 130 |
+
return outputs
|
| 131 |
+
|
| 132 |
+
def prediction(img):
|
| 133 |
+
|
| 134 |
+
img, ratio = preprocess(img, [640, 640])
|
| 135 |
+
|
| 136 |
+
session = onnxruntime.InferenceSession("yolox_s.onnx")
|
| 137 |
+
|
| 138 |
+
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
| 139 |
+
output = session.run(None, ort_inputs)
|
| 140 |
+
predictions = demo_postprocess(output[0], [640, 640])[0]
|
| 141 |
+
|
| 142 |
+
boxes = predictions[:, :4]
|
| 143 |
+
scores = predictions[:, 4:5] * predictions[:, 5:]
|
| 144 |
+
|
| 145 |
+
boxes_xyxy = np.ones_like(boxes)
|
| 146 |
+
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
|
| 147 |
+
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
|
| 148 |
+
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
|
| 149 |
+
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
|
| 150 |
+
boxes_xyxy /= ratio
|
| 151 |
+
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
| 152 |
+
if dets is not None:
|
| 153 |
+
boxes, cls_ids, score = dets[:, :4], dets[:, 4], dets[:, 5]
|
| 154 |
+
return boxes, cls_ids, score
|
| 155 |
+
|
| 156 |
+
def vis(img, boxes, scores, cls_ids, conf=0.5):
|
| 157 |
+
for i in range(len(boxes)):
|
| 158 |
+
box = boxes[i]
|
| 159 |
+
cls_id = int(cls_ids[i])
|
| 160 |
+
score = scores[i]
|
| 161 |
+
if score < conf:
|
| 162 |
+
continue
|
| 163 |
+
x0 = int(box[0])
|
| 164 |
+
y0 = int(box[1])
|
| 165 |
+
x1 = int(box[2])
|
| 166 |
+
y1 = int(box[3])
|
| 167 |
+
|
| 168 |
+
color = (0, 0, 255)
|
| 169 |
+
text = '{} km/h:{:.1f}%'.format(class_names[cls_id], score * 100)
|
| 170 |
+
txt_color = (255, 255, 255)
|
| 171 |
+
font = cv2.FONT_HERSHEY_DUPLEX
|
| 172 |
+
|
| 173 |
+
txt_size = cv2.getTextSize(text, font, 0.6, 1)[0]
|
| 174 |
+
cv2.rectangle(img, (x0, y0), (x1, y1), color, 2)
|
| 175 |
+
|
| 176 |
+
txt_bk_color = (0, 0, 255)
|
| 177 |
+
cv2.rectangle(
|
| 178 |
+
img,
|
| 179 |
+
(x0, y0 - 1),
|
| 180 |
+
(x0 + txt_size[0] + 1, y0 - int(1.5*txt_size[1])),
|
| 181 |
+
txt_bk_color,
|
| 182 |
+
-1
|
| 183 |
+
)
|
| 184 |
+
cv2.putText(img, text, (x0, y0-int(0.5*txt_size[1])), font, 0.6, txt_color, thickness=1)
|
| 185 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 186 |
+
return Image.fromarray(img)
|