Spaces:
Running
Running
Upload 2 files
Browse files- app.py +473 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import CLIPImageProcessor, AutoModel
|
| 2 |
+
import torch
|
| 3 |
+
import json
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import os
|
| 8 |
+
import faiss
|
| 9 |
+
import time
|
| 10 |
+
import requests
|
| 11 |
+
from huggingface_hub import login, snapshot_download
|
| 12 |
+
|
| 13 |
+
TITLE = "Danbooru Tagger"
|
| 14 |
+
DESCRIPTION = """
|
| 15 |
+
## Dataset
|
| 16 |
+
- Source: Cleaned Danbooru
|
| 17 |
+
|
| 18 |
+
## Metrics
|
| 19 |
+
- Validation Split: 10% of Dataset
|
| 20 |
+
- Validation Results:
|
| 21 |
+
|
| 22 |
+
### General
|
| 23 |
+
| Metric | Value |
|
| 24 |
+
|-----------------|-------------|
|
| 25 |
+
| Macro F1 | 0.4678 |
|
| 26 |
+
| Macro Precision | 0.4605 |
|
| 27 |
+
| Macro Recall | 0.5229 |
|
| 28 |
+
| Micro F1 | 0.6661 |
|
| 29 |
+
| Micro Precision | 0.6049 |
|
| 30 |
+
| Micro Recall | 0.7411 |
|
| 31 |
+
|
| 32 |
+
### Character
|
| 33 |
+
| Metric | Value |
|
| 34 |
+
|-----------------|-------------|
|
| 35 |
+
| Macro F1 | 0.8925 |
|
| 36 |
+
| Macro Precision | 0.9099 |
|
| 37 |
+
| Macro Recall | 0.8935 |
|
| 38 |
+
| Micro F1 | 0.9232 |
|
| 39 |
+
| Micro Precision | 0.9264 |
|
| 40 |
+
| Micro Recall | 0.9199 |
|
| 41 |
+
|
| 42 |
+
### Artist
|
| 43 |
+
| Metric | Value |
|
| 44 |
+
|-----------------|-------------|
|
| 45 |
+
| Macro F1 | 0.7904 |
|
| 46 |
+
| Macro Precision | 0.8286 |
|
| 47 |
+
| Macro Recall | 0.7904 |
|
| 48 |
+
| Micro F1 | 0.5989 |
|
| 49 |
+
| Micro Precision | 0.5975 |
|
| 50 |
+
| Micro Recall | 0.6004 |
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
kaomojis = [
|
| 54 |
+
"0_0",
|
| 55 |
+
"(o)_(o)",
|
| 56 |
+
"+_+",
|
| 57 |
+
"+_-",
|
| 58 |
+
"._.",
|
| 59 |
+
"<o>_<o>",
|
| 60 |
+
"<|>_<|>",
|
| 61 |
+
"=_=",
|
| 62 |
+
">_<",
|
| 63 |
+
"3_3",
|
| 64 |
+
"6_9",
|
| 65 |
+
">_o",
|
| 66 |
+
"@_@",
|
| 67 |
+
"^_^",
|
| 68 |
+
"o_o",
|
| 69 |
+
"u_u",
|
| 70 |
+
"x_x",
|
| 71 |
+
"|_|",
|
| 72 |
+
"||_||",
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
device = torch.device('cpu')
|
| 76 |
+
dtype = torch.float32
|
| 77 |
+
|
| 78 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 79 |
+
if hf_token:
|
| 80 |
+
login(token=hf_token)
|
| 81 |
+
else:
|
| 82 |
+
raise ValueError("environment variable HF_TOKEN not found.")
|
| 83 |
+
|
| 84 |
+
repo = snapshot_download('Johnny-Z/vit-e4')
|
| 85 |
+
model = AutoModel.from_pretrained(repo, dtype=dtype, trust_remote_code=True, device_map=device)
|
| 86 |
+
|
| 87 |
+
index_dir = snapshot_download('Johnny-Z/dan_index', repo_type='dataset')
|
| 88 |
+
|
| 89 |
+
processor = CLIPImageProcessor.from_pretrained(repo)
|
| 90 |
+
|
| 91 |
+
class MultiheadAttentionPoolingHead(nn.Module):
|
| 92 |
+
def __init__(self, input_size):
|
| 93 |
+
super().__init__()
|
| 94 |
+
|
| 95 |
+
self.map_probe = nn.Parameter(torch.randn(1, 1, input_size))
|
| 96 |
+
self.map_layernorm0 = nn.LayerNorm(input_size, eps=1e-08)
|
| 97 |
+
self.map_attention = torch.nn.MultiheadAttention(input_size, input_size // 64, batch_first=True)
|
| 98 |
+
self.map_layernorm1 = nn.LayerNorm(input_size, eps=1e-08)
|
| 99 |
+
self.map_ffn = nn.Sequential(
|
| 100 |
+
nn.Linear(input_size, input_size * 4),
|
| 101 |
+
nn.SiLU(),
|
| 102 |
+
nn.Linear(input_size * 4, input_size)
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
| 106 |
+
batch_size = hidden_state.shape[0]
|
| 107 |
+
probe = self.map_probe.repeat(batch_size, 1, 1)
|
| 108 |
+
|
| 109 |
+
hidden_state = self.map_layernorm0(hidden_state)
|
| 110 |
+
hidden_state = self.map_attention(probe, hidden_state, hidden_state)[0]
|
| 111 |
+
hidden_state = self.map_layernorm1(hidden_state)
|
| 112 |
+
|
| 113 |
+
residual = hidden_state
|
| 114 |
+
hidden_state = residual + self.map_ffn(hidden_state)
|
| 115 |
+
return hidden_state[:, 0]
|
| 116 |
+
|
| 117 |
+
class MLP(nn.Module):
|
| 118 |
+
def __init__(self, input_size, class_num):
|
| 119 |
+
super().__init__()
|
| 120 |
+
self.mlp_layer0 = nn.Sequential(
|
| 121 |
+
nn.LayerNorm(input_size, eps=1e-08),
|
| 122 |
+
nn.Linear(input_size, input_size // 2),
|
| 123 |
+
nn.SiLU()
|
| 124 |
+
)
|
| 125 |
+
self.mlp_layer1 = nn.Linear(input_size // 2, class_num)
|
| 126 |
+
self.sigmoid = nn.Sigmoid()
|
| 127 |
+
|
| 128 |
+
def forward(self, x):
|
| 129 |
+
x = self.mlp_layer0(x)
|
| 130 |
+
x = self.mlp_layer1(x)
|
| 131 |
+
x = self.sigmoid(x)
|
| 132 |
+
return x
|
| 133 |
+
|
| 134 |
+
class MLP_Retrieval(nn.Module):
|
| 135 |
+
def __init__(self, input_size, class_num):
|
| 136 |
+
super().__init__()
|
| 137 |
+
self.mlp_layer0 = nn.Sequential(
|
| 138 |
+
nn.Linear(input_size, input_size // 2),
|
| 139 |
+
nn.SiLU()
|
| 140 |
+
)
|
| 141 |
+
self.mlp_layer1 = nn.Linear(input_size // 2, class_num)
|
| 142 |
+
|
| 143 |
+
def forward(self, x):
|
| 144 |
+
x = self.mlp_layer0(x)
|
| 145 |
+
x = self.mlp_layer1(x)
|
| 146 |
+
x1, x2 = x[:, :15], x[:, 15:]
|
| 147 |
+
x1 = torch.softmax(x1, dim=1)
|
| 148 |
+
x2 = torch.softmax(x2, dim=1)
|
| 149 |
+
x = torch.cat([x1, x2], dim=1)
|
| 150 |
+
|
| 151 |
+
return x
|
| 152 |
+
|
| 153 |
+
class MLP_R(nn.Module):
|
| 154 |
+
def __init__(self, input_size):
|
| 155 |
+
super().__init__()
|
| 156 |
+
self.mlp_layer0 = nn.Sequential(
|
| 157 |
+
nn.Linear(input_size, 256),
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
def forward(self, x):
|
| 161 |
+
x = self.mlp_layer0(x)
|
| 162 |
+
return x
|
| 163 |
+
|
| 164 |
+
with open(os.path.join(repo, 'general_tag_dict.json'), 'r', encoding='utf-8') as f:
|
| 165 |
+
general_dict = json.load(f)
|
| 166 |
+
|
| 167 |
+
with open(os.path.join(repo, 'character_tag_dict.json'), 'r', encoding='utf-8') as f:
|
| 168 |
+
character_dict = json.load(f)
|
| 169 |
+
|
| 170 |
+
with open(os.path.join(repo, 'artist_tag_dict.json'), 'r', encoding='utf-8') as f:
|
| 171 |
+
artist_dict = json.load(f)
|
| 172 |
+
|
| 173 |
+
with open(os.path.join(repo, 'implications_list.json'), 'r', encoding='utf-8') as f:
|
| 174 |
+
implications_list = json.load(f)
|
| 175 |
+
|
| 176 |
+
with open(os.path.join(repo, 'artist_threshold.json'), 'r', encoding='utf-8') as f:
|
| 177 |
+
artist_thresholds = json.load(f)
|
| 178 |
+
|
| 179 |
+
with open(os.path.join(repo, 'character_threshold.json'), 'r', encoding='utf-8') as f:
|
| 180 |
+
character_thresholds = json.load(f)
|
| 181 |
+
|
| 182 |
+
with open(os.path.join(repo, 'general_threshold.json'), 'r', encoding='utf-8') as f:
|
| 183 |
+
general_thresholds = json.load(f)
|
| 184 |
+
|
| 185 |
+
model_map = MultiheadAttentionPoolingHead(2048)
|
| 186 |
+
model_map.load_state_dict(torch.load(os.path.join(repo, "map_head.pth"), map_location=device, weights_only=True))
|
| 187 |
+
model_map.to(device).to(dtype).eval()
|
| 188 |
+
|
| 189 |
+
general_class = 9775
|
| 190 |
+
mlp_general = MLP(2048, general_class)
|
| 191 |
+
mlp_general.load_state_dict(torch.load(os.path.join(repo, "cls_predictor_general.pth"), map_location=device, weights_only=True))
|
| 192 |
+
mlp_general.to(device).to(dtype).eval()
|
| 193 |
+
|
| 194 |
+
character_class = 7568
|
| 195 |
+
mlp_character = MLP(2048, character_class)
|
| 196 |
+
mlp_character.load_state_dict(torch.load(os.path.join(repo, "cls_predictor_character.pth"), map_location=device, weights_only=True))
|
| 197 |
+
mlp_character.to(device).to(dtype).eval()
|
| 198 |
+
|
| 199 |
+
artist_class = 13957
|
| 200 |
+
mlp_artist = MLP(2048, artist_class)
|
| 201 |
+
mlp_artist.load_state_dict(torch.load(os.path.join(repo, "cls_predictor_artist.pth"), map_location=device, weights_only=True))
|
| 202 |
+
mlp_artist.to(device).to(dtype).eval()
|
| 203 |
+
|
| 204 |
+
mlp_artist_retrieval = MLP_Retrieval(2048, artist_class)
|
| 205 |
+
mlp_artist_retrieval.load_state_dict(torch.load(os.path.join(repo, "cls_predictor_artist_retrieval.pth"), map_location=device, weights_only=True))
|
| 206 |
+
mlp_artist_retrieval.to(device).to(dtype).eval()
|
| 207 |
+
|
| 208 |
+
mlp_r = MLP_R(2048)
|
| 209 |
+
mlp_r.load_state_dict(torch.load(os.path.join(repo, "retrieval_head.pth"), map_location=device, weights_only=True))
|
| 210 |
+
mlp_r.to(device).to(dtype).eval()
|
| 211 |
+
|
| 212 |
+
def prediction_to_tag(prediction, tag_dict, class_num):
|
| 213 |
+
prediction = prediction.view(class_num)
|
| 214 |
+
predicted_ids = (prediction >= 0.2).nonzero(as_tuple=True)[0].cpu().numpy() + 1
|
| 215 |
+
|
| 216 |
+
general = {}
|
| 217 |
+
character = {}
|
| 218 |
+
artist = {}
|
| 219 |
+
date = {}
|
| 220 |
+
rating = {}
|
| 221 |
+
|
| 222 |
+
for tag, value in tag_dict.items():
|
| 223 |
+
if value[2] in predicted_ids:
|
| 224 |
+
tag_value = round(prediction[value[2] - 1].item(), 6)
|
| 225 |
+
if value[1] == "general" and tag_value >= general_thresholds.get(tag, {}).get("Threshold", 0.75):
|
| 226 |
+
general[tag] = tag_value
|
| 227 |
+
elif value[1] == "character" and tag_value >= character_thresholds.get(tag, {}).get("Threshold", 0.75):
|
| 228 |
+
character[tag] = tag_value
|
| 229 |
+
elif value[1] == "artist" and tag_value >= artist_thresholds.get(tag, {}).get("Threshold", 0.75):
|
| 230 |
+
artist[tag] = tag_value
|
| 231 |
+
elif value[1] == "rating":
|
| 232 |
+
rating[tag] = tag_value
|
| 233 |
+
elif value[1] == "date":
|
| 234 |
+
date[tag] = tag_value
|
| 235 |
+
|
| 236 |
+
general = dict(sorted(general.items(), key=lambda item: item[1], reverse=True))
|
| 237 |
+
character = dict(sorted(character.items(), key=lambda item: item[1], reverse=True))
|
| 238 |
+
artist = dict(sorted(artist.items(), key=lambda item: item[1], reverse=True))
|
| 239 |
+
|
| 240 |
+
if date:
|
| 241 |
+
date = {max(date, key=date.get): date[max(date, key=date.get)]}
|
| 242 |
+
if rating:
|
| 243 |
+
rating = {max(rating, key=rating.get): rating[max(rating, key=rating.get)]}
|
| 244 |
+
|
| 245 |
+
return general, character, artist, date, rating
|
| 246 |
+
|
| 247 |
+
def prediction_to_retrieval(prediction, tag_dict, class_num, top_k):
|
| 248 |
+
prediction = prediction.view(class_num)
|
| 249 |
+
predicted_ids = (prediction>=0.005).nonzero(as_tuple=True)[0].cpu().numpy() + 1
|
| 250 |
+
|
| 251 |
+
artist = {}
|
| 252 |
+
date = {}
|
| 253 |
+
|
| 254 |
+
for tag, value in tag_dict.items():
|
| 255 |
+
if value[2] in predicted_ids:
|
| 256 |
+
tag_value = round(prediction[value[2] - 1].item(), 6)
|
| 257 |
+
if value[1] == "artist":
|
| 258 |
+
artist[tag] = tag_value
|
| 259 |
+
elif value[1] == "date":
|
| 260 |
+
date[tag] = tag_value
|
| 261 |
+
|
| 262 |
+
artist = dict(sorted(artist.items(), key=lambda item: item[1], reverse=True))
|
| 263 |
+
artist = dict(list(artist.items())[:top_k])
|
| 264 |
+
|
| 265 |
+
if date:
|
| 266 |
+
date = {max(date, key=date.get): date[max(date, key=date.get)]}
|
| 267 |
+
|
| 268 |
+
return artist, date
|
| 269 |
+
|
| 270 |
+
def load_id_map(id_map_path):
|
| 271 |
+
with open(id_map_path, "r") as f:
|
| 272 |
+
id_map = json.load(f)
|
| 273 |
+
|
| 274 |
+
id_map = {int(k): int(v) for k, v in id_map.items()}
|
| 275 |
+
|
| 276 |
+
inv_map = {v: k for k, v in id_map.items()}
|
| 277 |
+
return id_map, inv_map
|
| 278 |
+
|
| 279 |
+
def search_index(query_vector, k=32, distance_threshold_min=0, distance_threshold_max=64, nprobe=4):
|
| 280 |
+
global index_dir
|
| 281 |
+
index_path = os.path.join(index_dir, 'danbooru_retrieval.index')
|
| 282 |
+
id_map_path = os.path.join(index_dir, 'danbooru_retrieval_id_map.json')
|
| 283 |
+
distance_threshold_min = distance_threshold_min**2
|
| 284 |
+
distance_threshold_max = distance_threshold_max**2
|
| 285 |
+
|
| 286 |
+
index = faiss.read_index(index_path)
|
| 287 |
+
|
| 288 |
+
if nprobe is not None and hasattr(index, "nprobe"):
|
| 289 |
+
index.nprobe = nprobe
|
| 290 |
+
_, inv_map = load_id_map(id_map_path)
|
| 291 |
+
|
| 292 |
+
qv = query_vector.detach().to(torch.float32).cpu().numpy()
|
| 293 |
+
|
| 294 |
+
distances, internal_ids = index.search(qv, k)
|
| 295 |
+
distances = distances[0]
|
| 296 |
+
internal_ids = internal_ids[0]
|
| 297 |
+
|
| 298 |
+
results = []
|
| 299 |
+
for dist, internal_id in zip(distances, internal_ids):
|
| 300 |
+
if internal_id == -1:
|
| 301 |
+
continue
|
| 302 |
+
if dist < distance_threshold_min or dist > distance_threshold_max:
|
| 303 |
+
continue
|
| 304 |
+
original_id = inv_map.get(int(internal_id))
|
| 305 |
+
if original_id is None:
|
| 306 |
+
continue
|
| 307 |
+
results.append({"original_id": original_id, "l2_distance": float(dist**0.5)})
|
| 308 |
+
results.sort(key=lambda x: x["l2_distance"])
|
| 309 |
+
|
| 310 |
+
return results
|
| 311 |
+
|
| 312 |
+
def fetch_retrieval_image_urls(retrieval_results, sleep_sec=0.25, timeout=4.0):
|
| 313 |
+
pairs = []
|
| 314 |
+
for item in retrieval_results:
|
| 315 |
+
oid = item.get("original_id")
|
| 316 |
+
if oid is None:
|
| 317 |
+
continue
|
| 318 |
+
api_url = f"https://danbooru.donmai.us/posts/{oid}.json"
|
| 319 |
+
try:
|
| 320 |
+
resp = requests.get(api_url, timeout=timeout)
|
| 321 |
+
if resp.status_code != 200:
|
| 322 |
+
|
| 323 |
+
time.sleep(sleep_sec)
|
| 324 |
+
continue
|
| 325 |
+
data = resp.json()
|
| 326 |
+
url = data.get("large_file_url") or data.get("file_url") or data.get("preview_file_url")
|
| 327 |
+
if not url:
|
| 328 |
+
time.sleep(sleep_sec)
|
| 329 |
+
continue
|
| 330 |
+
|
| 331 |
+
if url.startswith("//"):
|
| 332 |
+
url = "https:" + url
|
| 333 |
+
elif url.startswith("/"):
|
| 334 |
+
url = "https://danbooru.donmai.us" + url
|
| 335 |
+
pairs.append((url, oid))
|
| 336 |
+
except Exception:
|
| 337 |
+
|
| 338 |
+
pass
|
| 339 |
+
finally:
|
| 340 |
+
|
| 341 |
+
time.sleep(sleep_sec)
|
| 342 |
+
return pairs
|
| 343 |
+
|
| 344 |
+
def process_image(image, k, distance_threshold_min, distance_threshold_max):
|
| 345 |
+
try:
|
| 346 |
+
image = image.convert('RGBA')
|
| 347 |
+
background = Image.new('RGBA', image.size, (255, 255, 255, 255))
|
| 348 |
+
image = Image.alpha_composite(background, image).convert('RGB')
|
| 349 |
+
|
| 350 |
+
image_inputs = processor(images=[image], return_tensors="pt").to(device).to(dtype)
|
| 351 |
+
|
| 352 |
+
except (OSError, IOError) as e:
|
| 353 |
+
print(f"Error opening image: {e}")
|
| 354 |
+
return
|
| 355 |
+
with torch.no_grad():
|
| 356 |
+
embedding = model(image_inputs.pixel_values)
|
| 357 |
+
|
| 358 |
+
embedding = model_map(embedding)
|
| 359 |
+
|
| 360 |
+
embedding_r = mlp_r(embedding)
|
| 361 |
+
|
| 362 |
+
retrieval_results = search_index(embedding_r, k, distance_threshold_min, distance_threshold_max)
|
| 363 |
+
|
| 364 |
+
url_id_pairs = fetch_retrieval_image_urls(retrieval_results)
|
| 365 |
+
|
| 366 |
+
retrieval_gallery_items = [(url, f"https://danbooru.donmai.us/posts/{oid}") for url, oid in url_id_pairs]
|
| 367 |
+
|
| 368 |
+
general_prediction = mlp_general(embedding)
|
| 369 |
+
general_ = prediction_to_tag(general_prediction, general_dict, general_class)
|
| 370 |
+
general_tags = general_[0]
|
| 371 |
+
rating = general_[4]
|
| 372 |
+
|
| 373 |
+
character_prediction = mlp_character(embedding)
|
| 374 |
+
character_ = prediction_to_tag(character_prediction, character_dict, character_class)
|
| 375 |
+
character_tags = character_[1]
|
| 376 |
+
|
| 377 |
+
artist_retrieval_prediction = mlp_artist_retrieval(embedding)
|
| 378 |
+
artist_retrieval_ = prediction_to_retrieval(artist_retrieval_prediction, artist_dict, artist_class, 10)
|
| 379 |
+
artist_tags = artist_retrieval_[0]
|
| 380 |
+
date = artist_retrieval_[1]
|
| 381 |
+
|
| 382 |
+
combined_tags = {**general_tags}
|
| 383 |
+
|
| 384 |
+
tags_list = [tag for tag in combined_tags]
|
| 385 |
+
remove_list = []
|
| 386 |
+
for tag in tags_list:
|
| 387 |
+
if tag in implications_list:
|
| 388 |
+
for implication in implications_list[tag]:
|
| 389 |
+
remove_list.append(implication)
|
| 390 |
+
tags_list = [tag for tag in tags_list if tag not in remove_list]
|
| 391 |
+
tags_list = [tag.replace("_", " ") if tag not in kaomojis else tag for tag in tags_list]
|
| 392 |
+
|
| 393 |
+
tags_str = ", ".join(tags_list).replace("(", r"\(").replace(")", r"\)")
|
| 394 |
+
|
| 395 |
+
return (
|
| 396 |
+
tags_str,
|
| 397 |
+
artist_tags,
|
| 398 |
+
character_tags,
|
| 399 |
+
general_tags,
|
| 400 |
+
rating,
|
| 401 |
+
date,
|
| 402 |
+
retrieval_gallery_items,
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
def main():
|
| 406 |
+
with gr.Blocks(title=TITLE) as demo:
|
| 407 |
+
with gr.Column():
|
| 408 |
+
gr.Markdown(
|
| 409 |
+
value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>"
|
| 410 |
+
)
|
| 411 |
+
with gr.Row():
|
| 412 |
+
with gr.Column(variant="panel"):
|
| 413 |
+
submit = gr.Button(value="Submit", variant="primary", size="lg")
|
| 414 |
+
image = gr.Image(type="pil", image_mode="RGBA", label="Input")
|
| 415 |
+
k_slider = gr.Slider(1, 100, value=32, step=1, label="Top K Results")
|
| 416 |
+
distance_min_slider = gr.Slider(0, 128, value=0, step=1, label="Min Distance Threshold")
|
| 417 |
+
distance_max_slider = gr.Slider(0, 128, value=80, step=1, label="Max Distance Threshold")
|
| 418 |
+
with gr.Row():
|
| 419 |
+
clear = gr.ClearButton(
|
| 420 |
+
components=[
|
| 421 |
+
image,
|
| 422 |
+
k_slider,
|
| 423 |
+
distance_min_slider,
|
| 424 |
+
distance_max_slider,
|
| 425 |
+
],
|
| 426 |
+
variant="secondary",
|
| 427 |
+
size="lg",
|
| 428 |
+
)
|
| 429 |
+
gr.Markdown(value=DESCRIPTION)
|
| 430 |
+
with gr.Column(variant="panel"):
|
| 431 |
+
tags_str = gr.Textbox(label="Output", lines=4)
|
| 432 |
+
with gr.Row():
|
| 433 |
+
rating = gr.Label(label="Rating")
|
| 434 |
+
date = gr.Label(label="Year")
|
| 435 |
+
artist_tags = gr.Label(label="Artist")
|
| 436 |
+
character_tags = gr.Label(label="Character")
|
| 437 |
+
general_tags = gr.Label(label="General")
|
| 438 |
+
with gr.Row():
|
| 439 |
+
retrieval_gallery = gr.Gallery(
|
| 440 |
+
label="Retrieval Preview",
|
| 441 |
+
columns=5,
|
| 442 |
+
)
|
| 443 |
+
clear.add(
|
| 444 |
+
[
|
| 445 |
+
tags_str,
|
| 446 |
+
artist_tags,
|
| 447 |
+
general_tags,
|
| 448 |
+
character_tags,
|
| 449 |
+
rating,
|
| 450 |
+
date,
|
| 451 |
+
retrieval_gallery,
|
| 452 |
+
]
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
submit.click(
|
| 456 |
+
process_image,
|
| 457 |
+
inputs=[image, k_slider, distance_min_slider, distance_max_slider],
|
| 458 |
+
outputs=[
|
| 459 |
+
tags_str,
|
| 460 |
+
artist_tags,
|
| 461 |
+
character_tags,
|
| 462 |
+
general_tags,
|
| 463 |
+
rating,
|
| 464 |
+
date,
|
| 465 |
+
retrieval_gallery,
|
| 466 |
+
],
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
demo.queue(max_size=10)
|
| 470 |
+
demo.launch()
|
| 471 |
+
|
| 472 |
+
if __name__ == "__main__":
|
| 473 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
Pillow
|
| 4 |
+
gradio
|
| 5 |
+
einops
|
| 6 |
+
timm
|
| 7 |
+
accelerate
|
| 8 |
+
faiss-cpu
|