from transformers import CLIPImageProcessor, AutoModel import torch import json import torch.nn as nn from PIL import Image import gradio as gr import os import faiss import time import requests from huggingface_hub import login, snapshot_download TITLE = "Danbooru Tagger" DESCRIPTION = """ ## Dataset - Source: Cleaned Danbooru ## Metrics - Validation Split: 10% of Dataset - Validation Results: ### General | Metric | Value | |-----------------|-------------| | Macro F1 | 0.4678 | | Macro Precision | 0.4605 | | Macro Recall | 0.5229 | | Micro F1 | 0.6661 | | Micro Precision | 0.6049 | | Micro Recall | 0.7411 | ### Character | Metric | Value | |-----------------|-------------| | Macro F1 | 0.8925 | | Macro Precision | 0.9099 | | Macro Recall | 0.8935 | | Micro F1 | 0.9232 | | Micro Precision | 0.9264 | | Micro Recall | 0.9199 | ### Artist | Metric | Value | |-----------------|-------------| | Macro F1 | 0.7904 | | Macro Precision | 0.8286 | | Macro Recall | 0.7904 | | Micro F1 | 0.5989 | | Micro Precision | 0.5975 | | Micro Recall | 0.6004 | """ kaomojis = [ "0_0", "(o)_(o)", "+_+", "+_-", "._.", "_", "<|>_<|>", "=_=", ">_<", "3_3", "6_9", ">_o", "@_@", "^_^", "o_o", "u_u", "x_x", "|_|", "||_||", ] device = torch.device('cpu') dtype = torch.float32 hf_token = os.getenv("HF_TOKEN") if hf_token: login(token=hf_token) else: raise ValueError("environment variable HF_TOKEN not found.") repo = snapshot_download('Johnny-Z/vit-e4') model = AutoModel.from_pretrained(repo, dtype=dtype, trust_remote_code=True, device_map=device) index_dir = snapshot_download('Johnny-Z/dan_index', repo_type='dataset') processor = CLIPImageProcessor.from_pretrained(repo) class MultiheadAttentionPoolingHead(nn.Module): def __init__(self, input_size): super().__init__() self.map_probe = nn.Parameter(torch.randn(1, 1, input_size)) self.map_layernorm0 = nn.LayerNorm(input_size, eps=1e-08) self.map_attention = torch.nn.MultiheadAttention(input_size, input_size // 64, batch_first=True) self.map_layernorm1 = nn.LayerNorm(input_size, eps=1e-08) self.map_ffn = nn.Sequential( nn.Linear(input_size, input_size * 4), nn.SiLU(), nn.Linear(input_size * 4, input_size) ) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: batch_size = hidden_state.shape[0] probe = self.map_probe.repeat(batch_size, 1, 1) hidden_state = self.map_layernorm0(hidden_state) hidden_state = self.map_attention(probe, hidden_state, hidden_state)[0] hidden_state = self.map_layernorm1(hidden_state) residual = hidden_state hidden_state = residual + self.map_ffn(hidden_state) return hidden_state[:, 0] class MLP(nn.Module): def __init__(self, input_size, class_num): super().__init__() self.mlp_layer0 = nn.Sequential( nn.LayerNorm(input_size, eps=1e-08), nn.Linear(input_size, input_size // 2), nn.SiLU() ) self.mlp_layer1 = nn.Linear(input_size // 2, class_num) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.mlp_layer0(x) x = self.mlp_layer1(x) x = self.sigmoid(x) return x class MLP_Retrieval(nn.Module): def __init__(self, input_size, class_num): super().__init__() self.mlp_layer0 = nn.Sequential( nn.Linear(input_size, input_size // 2), nn.SiLU() ) self.mlp_layer1 = nn.Linear(input_size // 2, class_num) def forward(self, x): x = self.mlp_layer0(x) x = self.mlp_layer1(x) x1, x2 = x[:, :15], x[:, 15:] x1 = torch.softmax(x1, dim=1) x2 = torch.softmax(x2, dim=1) x = torch.cat([x1, x2], dim=1) return x class MLP_R(nn.Module): def __init__(self, input_size): super().__init__() self.mlp_layer0 = nn.Sequential( nn.Linear(input_size, 256), ) def forward(self, x): x = self.mlp_layer0(x) return x with open(os.path.join(repo, 'general_tag_dict.json'), 'r', encoding='utf-8') as f: general_dict = json.load(f) with open(os.path.join(repo, 'character_tag_dict.json'), 'r', encoding='utf-8') as f: character_dict = json.load(f) with open(os.path.join(repo, 'artist_tag_dict.json'), 'r', encoding='utf-8') as f: artist_dict = json.load(f) with open(os.path.join(repo, 'implications_list.json'), 'r', encoding='utf-8') as f: implications_list = json.load(f) with open(os.path.join(repo, 'artist_threshold.json'), 'r', encoding='utf-8') as f: artist_thresholds = json.load(f) with open(os.path.join(repo, 'character_threshold.json'), 'r', encoding='utf-8') as f: character_thresholds = json.load(f) with open(os.path.join(repo, 'general_threshold.json'), 'r', encoding='utf-8') as f: general_thresholds = json.load(f) model_map = MultiheadAttentionPoolingHead(2048) model_map.load_state_dict(torch.load(os.path.join(repo, "map_head.pth"), map_location=device, weights_only=True)) model_map.to(device).to(dtype).eval() general_class = 9775 mlp_general = MLP(2048, general_class) mlp_general.load_state_dict(torch.load(os.path.join(repo, "cls_predictor_general.pth"), map_location=device, weights_only=True)) mlp_general.to(device).to(dtype).eval() character_class = 7568 mlp_character = MLP(2048, character_class) mlp_character.load_state_dict(torch.load(os.path.join(repo, "cls_predictor_character.pth"), map_location=device, weights_only=True)) mlp_character.to(device).to(dtype).eval() artist_class = 13957 mlp_artist = MLP(2048, artist_class) mlp_artist.load_state_dict(torch.load(os.path.join(repo, "cls_predictor_artist.pth"), map_location=device, weights_only=True)) mlp_artist.to(device).to(dtype).eval() mlp_artist_retrieval = MLP_Retrieval(2048, artist_class) mlp_artist_retrieval.load_state_dict(torch.load(os.path.join(repo, "cls_predictor_artist_retrieval.pth"), map_location=device, weights_only=True)) mlp_artist_retrieval.to(device).to(dtype).eval() mlp_r = MLP_R(2048) mlp_r.load_state_dict(torch.load(os.path.join(repo, "retrieval_head.pth"), map_location=device, weights_only=True)) mlp_r.to(device).to(dtype).eval() def prediction_to_tag(prediction, tag_dict, class_num): prediction = prediction.view(class_num) predicted_ids = (prediction >= 0.2).nonzero(as_tuple=True)[0].cpu().numpy() + 1 general = {} character = {} artist = {} date = {} rating = {} for tag, value in tag_dict.items(): if value[2] in predicted_ids: tag_value = round(prediction[value[2] - 1].item(), 6) if value[1] == "general" and tag_value >= general_thresholds.get(tag, {}).get("Threshold", 0.75): general[tag] = tag_value elif value[1] == "character" and tag_value >= character_thresholds.get(tag, {}).get("Threshold", 0.75): character[tag] = tag_value elif value[1] == "artist" and tag_value >= artist_thresholds.get(tag, {}).get("Threshold", 0.75): artist[tag] = tag_value elif value[1] == "rating": rating[tag] = tag_value elif value[1] == "date": date[tag] = tag_value general = dict(sorted(general.items(), key=lambda item: item[1], reverse=True)) character = dict(sorted(character.items(), key=lambda item: item[1], reverse=True)) artist = dict(sorted(artist.items(), key=lambda item: item[1], reverse=True)) if date: date = {max(date, key=date.get): date[max(date, key=date.get)]} if rating: rating = {max(rating, key=rating.get): rating[max(rating, key=rating.get)]} return general, character, artist, date, rating def prediction_to_retrieval(prediction, tag_dict, class_num, top_k): prediction = prediction.view(class_num) predicted_ids = (prediction>=0.005).nonzero(as_tuple=True)[0].cpu().numpy() + 1 artist = {} date = {} for tag, value in tag_dict.items(): if value[2] in predicted_ids: tag_value = round(prediction[value[2] - 1].item(), 6) if value[1] == "artist": artist[tag] = tag_value elif value[1] == "date": date[tag] = tag_value artist = dict(sorted(artist.items(), key=lambda item: item[1], reverse=True)) artist = dict(list(artist.items())[:top_k]) if date: date = {max(date, key=date.get): date[max(date, key=date.get)]} return artist, date def load_id_map(id_map_path): with open(id_map_path, "r") as f: id_map = json.load(f) id_map = {int(k): int(v) for k, v in id_map.items()} inv_map = {v: k for k, v in id_map.items()} return id_map, inv_map def search_index(query_vector, k=32, distance_threshold_min=0, distance_threshold_max=64, nprobe=4): global index_dir index_path = os.path.join(index_dir, 'danbooru_retrieval.index') id_map_path = os.path.join(index_dir, 'danbooru_retrieval_id_map.json') distance_threshold_min = distance_threshold_min**2 distance_threshold_max = distance_threshold_max**2 index = faiss.read_index(index_path) if nprobe is not None and hasattr(index, "nprobe"): index.nprobe = nprobe _, inv_map = load_id_map(id_map_path) qv = query_vector.detach().to(torch.float32).cpu().numpy() distances, internal_ids = index.search(qv, k) distances = distances[0] internal_ids = internal_ids[0] results = [] for dist, internal_id in zip(distances, internal_ids): if internal_id == -1: continue if dist < distance_threshold_min or dist > distance_threshold_max: continue original_id = inv_map.get(int(internal_id)) if original_id is None: continue results.append({"original_id": original_id, "l2_distance": float(dist**0.5)}) results.sort(key=lambda x: x["l2_distance"]) return results def fetch_retrieval_image_urls(retrieval_results, sleep_sec=0.25, timeout=4.0): pairs = [] for item in retrieval_results: oid = item.get("original_id") if oid is None: continue api_url = f"https://danbooru.donmai.us/posts/{oid}.json" try: resp = requests.get(api_url, timeout=timeout) if resp.status_code != 200: time.sleep(sleep_sec) continue data = resp.json() url = data.get("large_file_url") or data.get("file_url") or data.get("preview_file_url") if not url: time.sleep(sleep_sec) continue if url.startswith("//"): url = "https:" + url elif url.startswith("/"): url = "https://danbooru.donmai.us" + url pairs.append((url, oid)) except Exception: pass finally: time.sleep(sleep_sec) return pairs def process_image(image, k, distance_threshold_min, distance_threshold_max): try: image = image.convert('RGBA') background = Image.new('RGBA', image.size, (255, 255, 255, 255)) image = Image.alpha_composite(background, image).convert('RGB') image_inputs = processor(images=[image], return_tensors="pt").to(device).to(dtype) except (OSError, IOError) as e: print(f"Error opening image: {e}") return with torch.no_grad(): embedding = model(image_inputs.pixel_values) embedding = model_map(embedding) embedding_r = mlp_r(embedding) retrieval_results = search_index(embedding_r, k, distance_threshold_min, distance_threshold_max) url_id_pairs = fetch_retrieval_image_urls(retrieval_results) retrieval_gallery_items = [(url, f"https://danbooru.donmai.us/posts/{oid}") for url, oid in url_id_pairs] general_prediction = mlp_general(embedding) general_ = prediction_to_tag(general_prediction, general_dict, general_class) general_tags = general_[0] rating = general_[4] character_prediction = mlp_character(embedding) character_ = prediction_to_tag(character_prediction, character_dict, character_class) character_tags = character_[1] artist_retrieval_prediction = mlp_artist_retrieval(embedding) artist_retrieval_ = prediction_to_retrieval(artist_retrieval_prediction, artist_dict, artist_class, 10) artist_tags = artist_retrieval_[0] date = artist_retrieval_[1] combined_tags = {**general_tags} tags_list = [tag for tag in combined_tags] remove_list = [] for tag in tags_list: if tag in implications_list: for implication in implications_list[tag]: remove_list.append(implication) tags_list = [tag for tag in tags_list if tag not in remove_list] tags_list = [tag.replace("_", " ") if tag not in kaomojis else tag for tag in tags_list] tags_str = ", ".join(tags_list).replace("(", r"\(").replace(")", r"\)") return ( tags_str, artist_tags, character_tags, general_tags, rating, date, retrieval_gallery_items, ) def main(): with gr.Blocks(title=TITLE) as demo: with gr.Column(): gr.Markdown( value=f"

{TITLE}

" ) with gr.Row(): with gr.Column(variant="panel"): submit = gr.Button(value="Submit", variant="primary", size="lg") image = gr.Image(type="pil", image_mode="RGBA", label="Input") k_slider = gr.Slider(1, 100, value=32, step=1, label="Top K Results") distance_min_slider = gr.Slider(0, 128, value=0, step=1, label="Min Distance Threshold") distance_max_slider = gr.Slider(0, 128, value=80, step=1, label="Max Distance Threshold") with gr.Row(): clear = gr.ClearButton( components=[ image, k_slider, distance_min_slider, distance_max_slider, ], variant="secondary", size="lg", ) gr.Markdown(value=DESCRIPTION) with gr.Column(variant="panel"): tags_str = gr.Textbox(label="Output", lines=4) with gr.Row(): rating = gr.Label(label="Rating") date = gr.Label(label="Year") artist_tags = gr.Label(label="Artist") character_tags = gr.Label(label="Character") general_tags = gr.Label(label="General") with gr.Row(): retrieval_gallery = gr.Gallery( label="Retrieval Preview", columns=5, ) clear.add( [ tags_str, artist_tags, general_tags, character_tags, rating, date, retrieval_gallery, ] ) submit.click( process_image, inputs=[image, k_slider, distance_min_slider, distance_max_slider], outputs=[ tags_str, artist_tags, character_tags, general_tags, rating, date, retrieval_gallery, ], ) demo.queue(max_size=10) demo.launch() if __name__ == "__main__": main()