Spaces:
Sleeping
Sleeping
jennzhuge
commited on
Commit
·
3f8dd98
1
Parent(s):
dccc973
pseudocode for pap
Browse files
app.py
CHANGED
|
@@ -1,12 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name, intensity):
|
| 4 |
-
return "Hello, " + name + "!" * int(intensity)
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
import gradio as gr
|
| 5 |
+
import numpy as mp
|
| 6 |
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
def predict_genus_dna(dnaSeqs):
|
| 9 |
+
genuses = []
|
| 10 |
+
|
| 11 |
+
probs = dnamodel.predict_proba(dnaSeqs)
|
| 12 |
+
preds = dnamodel.predict(dnaSeqs)
|
| 13 |
+
top5prob = np.argsort(probs, axis=1)[:,-n:]
|
| 14 |
+
top5class = dnamodel.classes_[top5prob]
|
| 15 |
+
|
| 16 |
+
pred_df = pd.DataFrame(data=[top5class, top5prob], columns= ['Genus', 'Probability'])
|
| 17 |
+
|
| 18 |
+
return genuses
|
| 19 |
+
|
| 20 |
+
def predict_genus_dna_env(dnaSeqsEnv):
|
| 21 |
+
genuses = {}
|
| 22 |
+
probs = model.predict_proba(dnaSeqsEnv)
|
| 23 |
+
preds = model.predict(dnaSeqsEnv)
|
| 24 |
+
|
| 25 |
+
for i in range(len(dnaSeqsEnv)):
|
| 26 |
+
top5prob = np.argsort(probs[i], axis=1)[:,-5:]
|
| 27 |
+
top5class = model.classes_[top5prob]
|
| 28 |
+
|
| 29 |
+
sampleStr = dnaSeqsEnv['nucraw'][i]
|
| 30 |
+
genuses[sampleStr] = (top5class, top5prob)
|
| 31 |
+
|
| 32 |
+
# pred_df = pd.DataFrame(data=[top5class, top5prob], columns= ['Genus', 'Probability'])
|
| 33 |
+
|
| 34 |
+
return genuses
|
| 35 |
+
|
| 36 |
+
# def get_genus_image(genus):
|
| 37 |
+
# # return a URL to genus image
|
| 38 |
+
# return f"https://example.com/images/{genus}.jpg"
|
| 39 |
+
|
| 40 |
+
def get_genuses(dna_file, dnaenv_file):
|
| 41 |
+
dna_df = pd.read_csv(dna_file.name)
|
| 42 |
+
dnaenv_df = pd.read_csv(dnaenv_file.name)
|
| 43 |
+
|
| 44 |
+
results = []
|
| 45 |
+
|
| 46 |
+
envdna_genuses = predict_genus_dna_env(dnaenv_df)
|
| 47 |
+
dna_genuses = predict_genus_dna(dna_df)
|
| 48 |
+
# images = [get_genus_image(genus) for genus in top_5_genuses]
|
| 49 |
+
|
| 50 |
+
results.append({
|
| 51 |
+
"sequence": dna_sequence,
|
| 52 |
+
"Predictions": envdna_genuses + dna_genuses,
|
| 53 |
+
# "images": images
|
| 54 |
+
})
|
| 55 |
+
|
| 56 |
+
return results
|
| 57 |
+
|
| 58 |
+
def display_results(results):
|
| 59 |
+
display = []
|
| 60 |
+
for result in results:
|
| 61 |
+
for i in range(len(result["predictions"])):
|
| 62 |
+
display.append({
|
| 63 |
+
"DNA Sequence": result["sequence"],
|
| 64 |
+
"Predicted Genus": result['predictions'][i][0],
|
| 65 |
+
"Predicted Genus": result['predictions'][i][0],
|
| 66 |
+
"Predicted Genus": result['predictions'][i][0],
|
| 67 |
+
# "Image": result["images"][i]
|
| 68 |
+
})
|
| 69 |
+
return pd.DataFrame(display)
|
| 70 |
+
|
| 71 |
+
def gradio_interface(file):
|
| 72 |
+
results = get_genuses(file)
|
| 73 |
+
return display_results(results)
|
| 74 |
+
|
| 75 |
+
# Gradio interface
|
| 76 |
+
with gr.Blocks() as demo:
|
| 77 |
+
with gr.Column():
|
| 78 |
+
gr.Markdown("# Top 5 Most Likely Genus Predictions")
|
| 79 |
+
file_input = gr.File(label="Upload CSV file", file_types=['csv'])
|
| 80 |
+
output_table = gr.Dataframe(headers=["DNA", "Coord", "DNA Only Pred Genus", "DNA Only Prob", "DNA & Env Pred Genus", "DNA & Env Prob"])
|
| 81 |
+
|
| 82 |
+
def update_output(file):
|
| 83 |
+
result_df = gradio_interface(file)
|
| 84 |
+
return result_df
|
| 85 |
+
|
| 86 |
+
file_input.change(update_output, inputs=file_input, outputs=output_table)
|
| 87 |
+
|
| 88 |
+
demo.launch()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# with gr.Blocks() as demo:
|
| 92 |
+
# with gr.Row():
|
| 93 |
+
# word = gr.Textbox(label="word")
|
| 94 |
+
# leng = gr.Number(label="leng")
|
| 95 |
+
# output = gr.Textbox(label="Output")
|
| 96 |
+
# with gr.Row():
|
| 97 |
+
# run = gr.Button()
|
| 98 |
+
|
| 99 |
+
# event = run.click(predict_genus,
|
| 100 |
+
# [word, leng],
|
| 101 |
+
# output,
|
| 102 |
+
# batch=True,
|
| 103 |
+
# max_batch_size=20)
|
| 104 |
+
|
| 105 |
+
# demo.launch()
|
| 106 |
+
|
| 107 |
+
# DB_USER = os.getenv("DB_USER")
|
| 108 |
+
# DB_PASSWORD = os.getenv("DB_PASSWORD")
|
| 109 |
+
# DB_HOST = os.getenv("DB_HOST")
|
| 110 |
+
# PORT = 8080
|
| 111 |
+
# DB_NAME = "bikeshare"
|
| 112 |
+
|
| 113 |
+
# connection_string = f"postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}?port={PORT}&dbname={DB_NAME}"
|
| 114 |
+
|
| 115 |
+
# def get_count_ride_type():
|
| 116 |
+
# df = pd.read_sql(
|
| 117 |
+
# """
|
| 118 |
+
# SELECT COUNT(ride_id) as n, rideable_type
|
| 119 |
+
# FROM rides
|
| 120 |
+
# GROUP BY rideable_type
|
| 121 |
+
# ORDER BY n DESC
|
| 122 |
+
# """,
|
| 123 |
+
# con=connection_string
|
| 124 |
+
# )
|
| 125 |
+
# fig_m, ax = plt.subplots()
|
| 126 |
+
# ax.bar(x=df['rideable_type'], height=df['n'])
|
| 127 |
+
# ax.set_title("Number of rides by bycycle type")
|
| 128 |
+
# ax.set_ylabel("Number of Rides")
|
| 129 |
+
# ax.set_xlabel("Bicycle Type")
|
| 130 |
+
# return fig_m
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# def get_most_popular_stations():
|
| 134 |
+
|
| 135 |
+
# df = pd.read_sql(
|
| 136 |
+
# """
|
| 137 |
+
# SELECT COUNT(ride_id) as n, MAX(start_station_name) as station
|
| 138 |
+
# FROM RIDES
|
| 139 |
+
# WHERE start_station_name is NOT NULL
|
| 140 |
+
# GROUP BY start_station_id
|
| 141 |
+
# ORDER BY n DESC
|
| 142 |
+
# LIMIT 5
|
| 143 |
+
# """,
|
| 144 |
+
# con=connection_string
|
| 145 |
+
# )
|
| 146 |
+
# fig_m, ax = plt.subplots()
|
| 147 |
+
# ax.bar(x=df['station'], height=df['n'])
|
| 148 |
+
# ax.set_title("Most popular stations")
|
| 149 |
+
# ax.set_ylabel("Number of Rides")
|
| 150 |
+
# ax.set_xlabel("Station Name")
|
| 151 |
+
# ax.set_xticklabels(
|
| 152 |
+
# df['station'], rotation=45, ha="right", rotation_mode="anchor"
|
| 153 |
+
# )
|
| 154 |
+
# ax.tick_params(axis="x", labelsize=8)
|
| 155 |
+
# fig_m.tight_layout()
|
| 156 |
+
# return fig_m
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
# with gr.Blocks() as demo:
|
| 160 |
+
# with gr.Row():
|
| 161 |
+
# bike_type = gr.Plot()
|
| 162 |
+
# station = gr.Plot()
|
| 163 |
+
|
| 164 |
+
# demo.load(get_count_ride_type, inputs=None, outputs=bike_type)
|
| 165 |
+
# demo.load(get_most_popular_stations, inputs=None, outputs=station)
|
| 166 |
+
|
| 167 |
+
# def greet(name, intensity):
|
| 168 |
+
# return "Hello, " + name + "!" * int(intensity)
|
| 169 |
+
|
| 170 |
+
# demo = gr.Interface(
|
| 171 |
+
# fn=greet,
|
| 172 |
+
# inputs=["text", "slider"],
|
| 173 |
+
# outputs=["text"],
|
| 174 |
+
# )
|
| 175 |
|
| 176 |
demo.launch()
|