Spaces:
Sleeping
Sleeping
jennzhuge
commited on
Commit
·
89a88ac
1
Parent(s):
a0e49d5
hi
Browse files
app.py
CHANGED
|
@@ -1,9 +1,12 @@
|
|
| 1 |
import json
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
# from transformers import PreTrainedTokenizerFast, BertForMaskedLM
|
| 5 |
from datasets import load_dataset
|
| 6 |
import infer
|
|
|
|
|
|
|
| 7 |
|
| 8 |
with open("default_inputs.json", "r") as default_inputs_file:
|
| 9 |
DEFAULT_INPUTS = json.load(default_inputs_file)
|
|
@@ -42,6 +45,8 @@ def preprocess():
|
|
| 42 |
def predict_genus():
|
| 43 |
data = preprocess()
|
| 44 |
out = infer.infer_dna(data)
|
|
|
|
|
|
|
| 45 |
|
| 46 |
results = []
|
| 47 |
|
|
@@ -54,35 +59,73 @@ def predict_genus():
|
|
| 54 |
|
| 55 |
return results
|
| 56 |
|
| 57 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
with gr.Blocks() as demo:
|
| 63 |
# Header section
|
| 64 |
gr.Markdown("# DNA Identifier Tool")
|
| 65 |
-
gr.Markdown("Welcome to Lofi Amazon Beats' DNA Identifier Tool")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
with gr.Tab("Genus Prediction"):
|
| 68 |
-
gr.Markdown("Enter a DNA sequence and the coordinates at which its sample was taken to get a genus prediction. Click 'I'm feeling lucky' to see a prediction for a random sequence.")
|
| 69 |
|
| 70 |
# Collect inputs for app (DNA and location)
|
| 71 |
-
with gr.Row():
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
-
with gr.Row():
|
| 82 |
-
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
with gr.Row():
|
| 88 |
gr.Markdown('Make plot or table for Top 5 species')
|
|
@@ -97,6 +140,9 @@ with gr.Blocks() as demo:
|
|
| 97 |
with gr.Row() as row:
|
| 98 |
with gr.Column():
|
| 99 |
gr.Markdown("Plot of your DNA sequence among other known species clusters.")
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
with gr.Column():
|
| 102 |
gr.Markdown("Plot of the five most common species at your sample coordinate.")
|
|
|
|
| 1 |
import json
|
| 2 |
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
import gradio as gr
|
| 5 |
# from transformers import PreTrainedTokenizerFast, BertForMaskedLM
|
| 6 |
from datasets import load_dataset
|
| 7 |
import infer
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from sklearn.manifold import TSNE
|
| 10 |
|
| 11 |
with open("default_inputs.json", "r") as default_inputs_file:
|
| 12 |
DEFAULT_INPUTS = json.load(default_inputs_file)
|
|
|
|
| 45 |
def predict_genus():
|
| 46 |
data = preprocess()
|
| 47 |
out = infer.infer_dna(data)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
|
| 51 |
results = []
|
| 52 |
|
|
|
|
| 59 |
|
| 60 |
return results
|
| 61 |
|
| 62 |
+
def tsne_DNA(data, genuses):
|
| 63 |
+
data["embeddings"] = data["embeddings"].apply(lambda x: np.array(list(map(float, x[1:-1].split()))))
|
| 64 |
+
|
| 65 |
+
# Pick genuses with most samples
|
| 66 |
+
top_k = 5
|
| 67 |
+
genus_counts = df["genus"].value_counts()
|
| 68 |
+
top_genuses = genus_counts.head(top_k).index
|
| 69 |
+
df = df[df["genus"].isin(top_genuses)]
|
| 70 |
+
|
| 71 |
+
# Create a t-SNE plot of the embeddings
|
| 72 |
+
n_genus = len(df["genus"].unique())
|
| 73 |
+
tsne = TSNE(n_components=2, perplexity=30, learning_rate=200, n_iter=1000, random_state=0)
|
| 74 |
+
|
| 75 |
+
X = np.stack(df["embeddings"].tolist())
|
| 76 |
+
y = df["genus"].tolist()
|
| 77 |
|
| 78 |
+
X_tsne = tsne.fit_transform(X)
|
| 79 |
+
|
| 80 |
+
label_encoder = LabelEncoder()
|
| 81 |
+
y_encoded = label_encoder.fit_transform(y)
|
| 82 |
+
|
| 83 |
+
plot = plt.figure(figsize=(6, 5))
|
| 84 |
+
scatter = plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y_encoded, cmap="viridis", alpha=0.7)
|
| 85 |
+
|
| 86 |
+
return plot
|
| 87 |
|
| 88 |
|
| 89 |
with gr.Blocks() as demo:
|
| 90 |
# Header section
|
| 91 |
gr.Markdown("# DNA Identifier Tool")
|
| 92 |
+
gr.Markdown("Welcome to Lofi Amazon Beats' DNA Identifier Tool. Please enter a DNA sequence and the coordinates at which its sample was taken to get started. Click 'I'm feeling lucky' to see use a random sequence.")
|
| 93 |
+
with gr.Row():
|
| 94 |
+
with gr.Column():
|
| 95 |
+
inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")
|
| 96 |
+
|
| 97 |
+
with gr.Column():
|
| 98 |
+
with gr.Row():
|
| 99 |
+
inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")
|
| 100 |
+
with gr.Row():
|
| 101 |
+
inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")
|
| 102 |
+
|
| 103 |
+
with gr.Row():
|
| 104 |
+
btn_run = gr.Button("Predict")
|
| 105 |
+
|
| 106 |
+
btn_defaults = gr.Button("I'm feeling lucky")
|
| 107 |
+
btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
|
| 108 |
+
|
| 109 |
|
| 110 |
with gr.Tab("Genus Prediction"):
|
| 111 |
+
# gr.Markdown("Enter a DNA sequence and the coordinates at which its sample was taken to get a genus prediction. Click 'I'm feeling lucky' to see a prediction for a random sequence.")
|
| 112 |
|
| 113 |
# Collect inputs for app (DNA and location)
|
| 114 |
+
# with gr.Row():
|
| 115 |
+
# with gr.Column():
|
| 116 |
+
# inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")
|
| 117 |
|
| 118 |
+
# with gr.Column():
|
| 119 |
+
# with gr.Row():
|
| 120 |
+
# inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")
|
| 121 |
+
# with gr.Row():
|
| 122 |
+
# inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")
|
| 123 |
|
| 124 |
+
# with gr.Row():
|
| 125 |
+
# btn_run = gr.Button("Predict")
|
| 126 |
|
| 127 |
+
# btn_defaults = gr.Button("I'm feeling lucky")
|
| 128 |
+
# btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
|
| 129 |
|
| 130 |
with gr.Row():
|
| 131 |
gr.Markdown('Make plot or table for Top 5 species')
|
|
|
|
| 140 |
with gr.Row() as row:
|
| 141 |
with gr.Column():
|
| 142 |
gr.Markdown("Plot of your DNA sequence among other known species clusters.")
|
| 143 |
+
plot = gr.Plot("")
|
| 144 |
+
|
| 145 |
+
btn_run.click(fn=tsne_DNA, inputs=[inp_dna, genus_out])
|
| 146 |
|
| 147 |
with gr.Column():
|
| 148 |
gr.Markdown("Plot of the five most common species at your sample coordinate.")
|