Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from tensorflow_tts.inference import AutoProcessor, TFAutoModel | |
| import tensorflow as tf | |
| import numpy as np | |
| import soundfile as sf | |
| import yaml | |
| processor = AutoProcessor.from_pretrained("MarcNg/fastspeech2-vi-infore") | |
| fastspeech2 = TFAutoModel.from_pretrained("MarcNg/fastspeech2-vi-infore") | |
| mb_melgan = TFAutoModel.from_pretrained("tensorspeech/tts-mb_melgan-ljspeech-en") | |
| output = "output.wav" | |
| st.header("MarcNg/fastspeech2-vi-infore Demo") | |
| def tts(text): | |
| input_ids = processor.text_to_sequence(text) | |
| mel_before, mel_after, duration_outputs, _, _ = fastspeech2.inference( | |
| input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), | |
| speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), | |
| speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
| f0_ratios =tf.convert_to_tensor([1.0], dtype=tf.float32), | |
| energy_ratios =tf.convert_to_tensor([1.0], dtype=tf.float32), | |
| ) | |
| return mel_after | |
| text = st.text_input("Text to process") | |
| if st.button("Speak"): | |
| mel_after = tts(text) | |
| audio_after = mb_melgan.inference(mel_after)[0, :, 0] | |
| sf.write(output, audio_after, 22050, 'PCM_16') | |
| st.audio(output, format='audio/wav') | |