Mischa88 commited on
Commit
179cca4
ยท
verified ยท
1 Parent(s): 8c8801c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -60
app.py CHANGED
@@ -1,64 +1,71 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import random, json
3
+ from googletrans import Translator
4
+ from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ translator = Translator()
7
+ sentiment_model = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
8
+
9
+ with open("questions.json", "r") as f:
10
+ questions = json.load(f)
11
+
12
+ with open("chatbot_lines.json", "r") as f:
13
+ chatbot_lines = json.load(f)
14
+
15
+ # Helper functies
16
+ def get_question(mode):
17
+ return random.choice(questions[mode])
18
+
19
+ def process_input(audio, lang_from, lang_to):
20
+ text = "(Gesproken tekst hier invoegen)"
21
+ translation = translator.translate(text, src=lang_from, dest=lang_to).text
22
+ sentiment = sentiment_model(text)[0]
23
+ emotion = f"{sentiment['label']} ({sentiment['score']:.2f})"
24
+ # Chatbotreactie afhankelijk van type vraag
25
+ if sentiment['label'].lower() in ["1 star", "2 stars"]:
26
+ botline = random.choice(chatbot_lines["pittig"])
27
+ else:
28
+ botline = random.choice(chatbot_lines["grappig"])
29
+ return text, translation, emotion, botline
30
+
31
+ with gr.Blocks() as demo:
32
+ gr.Markdown("## ๐ŸŽญ Relatiegame voor 2 spelers op dezelfde computer")
33
+
34
+ with gr.Row():
35
+ speler1_taal = gr.Dropdown(["en", "pl"], label="Speler A spreekt", value="en")
36
+ speler2_taal = gr.Dropdown(["pl", "en"], label="Speler B spreekt", value="pl")
37
+
38
+ mode = gr.Radio(["emotioneel", "speels"], label="Soort vraag")
39
+ vraagveld = gr.Textbox(label="Vraag", interactive=False)
40
+ nieuwevraag = gr.Button("Nieuwe vraag")
41
+
42
+ with gr.Row():
43
+ audio1 = gr.Audio(source="microphone", type="filepath", label="๐ŸŽ™๏ธ Speler A opname")
44
+ audio2 = gr.Audio(source="microphone", type="filepath", label="๐ŸŽ™๏ธ Speler B opname")
45
+
46
+ out1 = gr.Textbox(label="Transcriptie Speler A")
47
+ trans1 = gr.Textbox(label="Vertaling voor Speler B")
48
+ emo1 = gr.Textbox(label="Emotie Speler A")
49
+ bot1 = gr.Textbox(label="๐Ÿค– Opmerking Chatbot A")
50
+
51
+ out2 = gr.Textbox(label="Transcriptie Speler B")
52
+ trans2 = gr.Textbox(label="Vertaling voor Speler A")
53
+ emo2 = gr.Textbox(label="Emotie Speler B")
54
+ bot2 = gr.Textbox(label="๐Ÿค– Opmerking Chatbot B")
55
+
56
+ nieuwevraag.click(fn=get_question, inputs=mode, outputs=vraagveld)
57
+
58
+ def run_a(a, l1, l2): return process_input(a, l1, l2)
59
+ def run_b(b, l2, l1): return process_input(b, l2, l1)
60
+
61
+ knop = gr.Button("๐ŸŽฎ Beiden ingesproken, verwerk antwoord")
62
+ knop.click(run_a, inputs=[audio1, speler1_taal, speler2_taal], outputs=[out1, trans1, emo1, bot1])
63
+ knop.click(run_b, inputs=[audio2, speler2_taal, speler1_taal], outputs=[out2, trans2, emo2, bot2])
64
+
65
+ gr.Markdown("""
66
+ ๐Ÿ” Blijf spelen. Lach samen. Voel samen. Begrijp elkaar beter.
67
+ ๐Ÿค– Onze chatbot maakt het luchtig, maar de diepgang zit in jullie antwoorden.
68
+ """)
69
 
70
  if __name__ == "__main__":
71
+ demo.launch()