import requests import streamlit as st import PyPDF2 import torch from transformers import AutoTokenizer, LEDForConditionalGeneration st.set_page_config(page_title="Summarization", page_icon="📈",layout="wide") hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) import pandas as pd import time import sys import pickle #from stqdm import stqdm import base64 #from tensorflow.keras.preprocessing.text import Tokenizer #from tensorflow.keras.preprocessing.sequence import pad_sequences import numpy as np import json import os import re import nltk from nltk.corpus import words nltk.download('words') #from tensorflow.keras.models import load_model #st.write("API examples - Dermatophagoides, Miconazole, neomycin,Iothalamate") #background_image = sys.path[1]+"/streamlit_datafile_links/audience-1853662_960_720.jpg" # Path to your background image def add_bg_from_local(image_file): with open(image_file, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) st.markdown( f""" """, unsafe_allow_html=True ) #add_bg_from_local(background_image) #@st.cache st.header('Summarization') def convert_df(df): # IMPORTANT: Cache the conversion to prevent computation on every rerun return df.to_csv(index=False).encode('utf-8') col1, col2 = st.columns([4,1]) result_csv_batch_sql = result_csv_batch_fail=result_csv_batch=result_csv4=result_csv3=result_csv1=result_csv2=0 with col1: models = st.selectbox( 'Select the option', ('model1', )) #try: if models == 'model1': st.markdown("") else: st.markdown("") with st.form("form1"): hide_label = """ """ text_data = st.text_input('Enter the text') print(text_data) st.markdown(hide_label, unsafe_allow_html=True) submitted = st.form_submit_button("Submit") if submitted: #torch.cuda.set_device(2) tokenizer = AutoTokenizer.from_pretrained('allenai/PRIMERA-multinews') model = LEDForConditionalGeneration.from_pretrained('allenai/PRIMERA-multinews') #device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # get the device device = "cpu" model.to(device) # move the model to the device documents = text_data # Tokenize and encode the documents inputs = tokenizer(documents, return_tensors='pt', padding=True, truncation=True,max_length=1000000) # Move the inputs to the device inputs = inputs.to(device) # Generate summaries outputs = model.generate(**inputs,max_length=1000000) # Decode the summaries st.write(tokenizer.batch_decode(outputs, skip_special_tokens=True)) st.success('Prediction done successfully!', icon="✅") _=''' except Exception as e: if 'NoneType' or 'not defined' in str(e): st.warning('Enter the required inputs', icon="⚠️") else: st.warning(str(e), icon="⚠️") ''' for i in range(30): st.markdown('##')