Upload 7 files
Browse files- app.py +69 -0
- model/CLAPSep.py +126 -0
- model/CLAPSep_decoder.py +605 -0
- model/best_model.ckpt +3 -0
- model/music_audioset_epoch_15_esc_90.14.pt +3 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from model.CLAPSep import CLAPSep
|
| 3 |
+
import torch
|
| 4 |
+
import librosa
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
model_config = {"lan_embed_dim": 1024,
|
| 9 |
+
"depths": [1, 1, 1, 1],
|
| 10 |
+
"embed_dim": 128,
|
| 11 |
+
"encoder_embed_dim": 128,
|
| 12 |
+
"phase": False,
|
| 13 |
+
"spec_factor": 8,
|
| 14 |
+
"d_attn": 640,
|
| 15 |
+
"n_masker_layer": 3,
|
| 16 |
+
"conv": False}
|
| 17 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 18 |
+
CLAP_path = "model/music_audioset_epoch_15_esc_90.14.pt"
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
model = CLAPSep(model_config, CLAP_path).to(DEVICE)
|
| 22 |
+
ckpt = torch.load('model/best_model.ckpt', map_location=DEVICE)
|
| 23 |
+
model.load_state_dict(ckpt, strict=False)
|
| 24 |
+
model.eval()
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def inference(audio_file_path: str, text_p: str, text_n: str):
|
| 29 |
+
print(f"Separate audio from [{audio_file_path}] with textual query p: [{text_p}] and n: [{text_n}]")
|
| 30 |
+
|
| 31 |
+
mixture, _ = librosa.load(audio_file_path, sr=32000)
|
| 32 |
+
|
| 33 |
+
pad = (320000 - (len(mixture) % 320000))if len(mixture) % 320000 != 0 else 0
|
| 34 |
+
|
| 35 |
+
mixture =torch.tensor(np.pad(mixture,(0,pad)))
|
| 36 |
+
|
| 37 |
+
mixture_chunks = torch.chunk(mixture, dim=0, chunks=len(mixture)//320000)
|
| 38 |
+
sep_segments = []
|
| 39 |
+
for chunk in mixture_chunks:
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
sep_segments.append(model.inference_from_data(chunk.unsqueeze(0), [text_p], [text_n]))
|
| 42 |
+
|
| 43 |
+
sep_segment = torch.concat(sep_segments, dim=1)
|
| 44 |
+
|
| 45 |
+
return 32000, sep_segment.squeeze().numpy()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
with gr.Blocks(title="CLAPSep") as demo:
|
| 49 |
+
with gr.Row():
|
| 50 |
+
with gr.Column():
|
| 51 |
+
input_audio = gr.Audio(label="Mixture", type="filepath")
|
| 52 |
+
text_p = gr.Textbox(label="Positive Query")
|
| 53 |
+
text_n = gr.Textbox(label="Negative Query")
|
| 54 |
+
with gr.Column():
|
| 55 |
+
with gr.Column():
|
| 56 |
+
output_audio = gr.Audio(label="Separation Result", scale=10)
|
| 57 |
+
button = gr.Button(
|
| 58 |
+
"Separate",
|
| 59 |
+
variant="primary",
|
| 60 |
+
scale=2,
|
| 61 |
+
size="lg",
|
| 62 |
+
interactive=True,
|
| 63 |
+
)
|
| 64 |
+
button.click(
|
| 65 |
+
fn=inference, inputs=[input_audio, text_p, text_n], outputs=[output_audio]
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
demo.queue().launch(share=True)
|
model/CLAPSep.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: UTF-8 -*-
|
| 3 |
+
'''
|
| 4 |
+
@Project :Waveformer-main
|
| 5 |
+
@File :CLAPSep.py
|
| 6 |
+
@IDE :PyCharm
|
| 7 |
+
@Author :Aisaka/Hao Ma @SDU
|
| 8 |
+
@Date :2024/2/28 下午1:12
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from torch import nn
|
| 13 |
+
import torchaudio
|
| 14 |
+
import laion_clap
|
| 15 |
+
from .CLAPSep_decoder import HTSAT_Decoder
|
| 16 |
+
import copy
|
| 17 |
+
import loralib as lora
|
| 18 |
+
from torchlibrosa import ISTFT, STFT
|
| 19 |
+
from torchlibrosa.stft import magphase
|
| 20 |
+
import librosa
|
| 21 |
+
|
| 22 |
+
def set_module(model, submodule_key, module):
|
| 23 |
+
tokens = submodule_key.split('.')
|
| 24 |
+
sub_tokens = tokens[:-1]
|
| 25 |
+
cur_mod = model
|
| 26 |
+
for s in sub_tokens:
|
| 27 |
+
cur_mod = getattr(cur_mod, s)
|
| 28 |
+
setattr(cur_mod, tokens[-1], module)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def process_model(model, rank):
|
| 32 |
+
for n, module in model.named_modules():
|
| 33 |
+
if 'WindowAttention' in str(type(module)):
|
| 34 |
+
for n_, layer in module.named_modules():
|
| 35 |
+
if isinstance(layer, torch.nn.Linear):
|
| 36 |
+
lora_layer = lora.Linear(layer.in_features, layer.out_features, r=rank,
|
| 37 |
+
bias=hasattr(layer, 'bias'), merge_weights=True)
|
| 38 |
+
lora_layer.weight = layer.weight
|
| 39 |
+
if hasattr(layer, 'bias'):
|
| 40 |
+
lora_layer.bias = layer.bias
|
| 41 |
+
set_module(model, n+'.'+n_, lora_layer)
|
| 42 |
+
return model
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class CLAPSep(nn.Module):
|
| 46 |
+
def __init__(self, model_config, CLAP_path, use_lora=True, rank=16, nfft=1024):
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.resampler = torchaudio.transforms.Resample(32000, 48000)
|
| 49 |
+
self.clap_model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cpu')
|
| 50 |
+
self.clap_model.load_ckpt(CLAP_path)
|
| 51 |
+
for p in self.clap_model.parameters():
|
| 52 |
+
p.requires_grad = False
|
| 53 |
+
self.audio_branch = copy.deepcopy(self.clap_model.model.audio_branch)
|
| 54 |
+
if use_lora:
|
| 55 |
+
process_model(self.audio_branch, rank)
|
| 56 |
+
self.decoder_model = HTSAT_Decoder(**model_config)
|
| 57 |
+
self.stft = STFT(n_fft=nfft, hop_length=320,
|
| 58 |
+
win_length=nfft, window='hann', center=True, pad_mode='reflect',
|
| 59 |
+
freeze_parameters=True)
|
| 60 |
+
self.istft = ISTFT(n_fft=nfft, hop_length=320,
|
| 61 |
+
win_length=nfft, window='hann', center=True, pad_mode='reflect',
|
| 62 |
+
freeze_parameters=True)
|
| 63 |
+
self.features = self.install_forward_hooks()
|
| 64 |
+
|
| 65 |
+
def wav_reconstruct(self, mask, mag_x, cos_x, sin_x, length):
|
| 66 |
+
mag_y = torch.nn.functional.relu_(mag_x * mask)
|
| 67 |
+
cos_y = cos_x
|
| 68 |
+
sin_y = sin_x
|
| 69 |
+
pred = self.istft(mag_y * cos_y, mag_y * sin_y, length=length)
|
| 70 |
+
return pred
|
| 71 |
+
|
| 72 |
+
def inference_from_data(self, mixed, pos_prompt, neg_prompt):
|
| 73 |
+
self.eval()
|
| 74 |
+
real, imag = self.stft(mixed)
|
| 75 |
+
mag, cos, sin = magphase(real, imag)
|
| 76 |
+
self.features.append(mag)
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
embed_pos, embed_neg = torch.chunk(self.clap_model.get_text_embedding(pos_prompt + neg_prompt,
|
| 79 |
+
use_tensor=True), dim=0, chunks=2)
|
| 80 |
+
embed_pos = torch.zeros_like(embed_pos) if pos_prompt == '' else embed_pos
|
| 81 |
+
embed_neg = torch.zeros_like(embed_neg) if neg_prompt == '' else embed_neg
|
| 82 |
+
embed = torch.concat([embed_pos, embed_neg], dim=-1)
|
| 83 |
+
self.audio_branch({"waveform": self.resampler(mixed)})
|
| 84 |
+
mask = self.decoder_model(hidden_state=self.features[-1], skip_features=self.features[:-1], embed=embed)
|
| 85 |
+
pred = self.wav_reconstruct(mask, mag, cos, sin, length=mixed.size(-1))
|
| 86 |
+
del self.features[:]
|
| 87 |
+
return pred
|
| 88 |
+
|
| 89 |
+
def install_forward_hooks(self):
|
| 90 |
+
features = []
|
| 91 |
+
|
| 92 |
+
def get_features_list(_, __, output):
|
| 93 |
+
features.append(output)
|
| 94 |
+
|
| 95 |
+
def get_features_list_basic_layer(_, __, output):
|
| 96 |
+
features.append(output[0])
|
| 97 |
+
|
| 98 |
+
def spectrogram_padding(_, __, out):
|
| 99 |
+
return torch.nn.functional.pad(out, (0, 0, 0, 1024 - out.size(2)))
|
| 100 |
+
|
| 101 |
+
self.audio_branch.spectrogram_extractor.register_forward_hook(spectrogram_padding)
|
| 102 |
+
self.audio_branch.patch_embed.register_forward_hook(get_features_list)
|
| 103 |
+
for module in self.audio_branch.layers:
|
| 104 |
+
module.register_forward_hook(get_features_list_basic_layer)
|
| 105 |
+
return features
|
| 106 |
+
|
| 107 |
+
if __name__ == '__main__':
|
| 108 |
+
model_config = {"lan_embed_dim": 1024,
|
| 109 |
+
"depths": [1, 1, 1, 1],
|
| 110 |
+
"embed_dim": 128,
|
| 111 |
+
"encoder_embed_dim": 128,
|
| 112 |
+
"phase": False,
|
| 113 |
+
"spec_factor": 8,
|
| 114 |
+
"d_attn": 640,
|
| 115 |
+
"n_masker_layer": 3,
|
| 116 |
+
"conv": False}
|
| 117 |
+
CLAP_path = "./music_audioset_epoch_15_esc_90.14.pt"
|
| 118 |
+
|
| 119 |
+
model = CLAPSep(model_config, CLAP_path)
|
| 120 |
+
ckpt = torch.load('best_model.ckpt', map_location='cpu')
|
| 121 |
+
model.load_state_dict(ckpt, strict=False)
|
| 122 |
+
model.eval()
|
| 123 |
+
audio, fs = librosa.load("./510_25.221254348754883_mixture.wav", sr=32000)
|
| 124 |
+
pred = model.inference_from_data(torch.tensor(audio).unsqueeze(0), pos_prompt=[''], neg_prompt=['A vehicle engine revving then powering down.'])
|
| 125 |
+
import soundfile as sf
|
| 126 |
+
sf.write('./pred.wav', pred.squeeze().numpy(), 32000)
|
model/CLAPSep_decoder.py
ADDED
|
@@ -0,0 +1,605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: UTF-8 -*-
|
| 3 |
+
'''
|
| 4 |
+
@Project :Waveformer-main
|
| 5 |
+
@File :CLAPsep_decoder.py
|
| 6 |
+
@IDE :PyCharm
|
| 7 |
+
@Author :Aisaka/Hao Ma @SDU
|
| 8 |
+
@Date :2023/10/31 下午8:34
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
from laion_clap.clap_module.htsat import *
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
class Transpose(nn.Module):
|
| 16 |
+
|
| 17 |
+
def __init__(self, dim0, dim1):
|
| 18 |
+
super(Transpose, self).__init__()
|
| 19 |
+
self.dim0 = dim0
|
| 20 |
+
self.dim1 = dim1
|
| 21 |
+
|
| 22 |
+
def forward(self, x):
|
| 23 |
+
return x.transpose(self.dim0, self.dim1)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class Swish(nn.Module):
|
| 27 |
+
|
| 28 |
+
def __init__(self):
|
| 29 |
+
super(Swish, self).__init__()
|
| 30 |
+
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
return x * x.sigmoid()
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class Glu(nn.Module):
|
| 36 |
+
|
| 37 |
+
def __init__(self, dim):
|
| 38 |
+
super(Glu, self).__init__()
|
| 39 |
+
self.dim = dim
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
x_in, x_gate = x.chunk(2, dim=self.dim)
|
| 43 |
+
return x_in * x_gate.sigmoid()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class FiLM(nn.Module):
|
| 47 |
+
def __init__(self, dim_in=1024, hidden_dim=768):
|
| 48 |
+
super(FiLM, self).__init__()
|
| 49 |
+
self.beta = nn.Linear(dim_in, hidden_dim)
|
| 50 |
+
self.gamma = nn.Linear(dim_in, hidden_dim)
|
| 51 |
+
|
| 52 |
+
def forward(self, hidden_state, embed):
|
| 53 |
+
embed = embed.unsqueeze(1)
|
| 54 |
+
return self.gamma(embed) * hidden_state + self.beta(embed)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class SkipTrans(nn.Module):
|
| 58 |
+
def __init__(self, in_features, out_features, embed_dim=512, film=True):
|
| 59 |
+
super(SkipTrans, self).__init__()
|
| 60 |
+
self.film = film
|
| 61 |
+
if film:
|
| 62 |
+
self.skip_conv = FiLM(embed_dim, out_features)
|
| 63 |
+
self.feature_proj = nn.Linear(in_features, out_features)
|
| 64 |
+
self.norm = nn.LayerNorm(out_features)
|
| 65 |
+
|
| 66 |
+
def forward(self, skip, embed, x=None):
|
| 67 |
+
out = self.feature_proj(skip)
|
| 68 |
+
if self.film:
|
| 69 |
+
out = self.skip_conv(out, embed)
|
| 70 |
+
return self.norm(out) if x is None else self.norm(out + x)
|
| 71 |
+
|
| 72 |
+
class Conv1d(nn.Conv1d):
|
| 73 |
+
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
in_channels,
|
| 77 |
+
out_channels,
|
| 78 |
+
kernel_size,
|
| 79 |
+
stride = 1,
|
| 80 |
+
padding = "same",
|
| 81 |
+
dilation = 1,
|
| 82 |
+
groups = 1,
|
| 83 |
+
bias = True
|
| 84 |
+
):
|
| 85 |
+
super(Conv1d, self).__init__(
|
| 86 |
+
in_channels=in_channels,
|
| 87 |
+
out_channels=out_channels,
|
| 88 |
+
kernel_size=kernel_size,
|
| 89 |
+
stride=stride,
|
| 90 |
+
padding=0,
|
| 91 |
+
dilation=dilation,
|
| 92 |
+
groups=groups,
|
| 93 |
+
bias=bias,
|
| 94 |
+
padding_mode="zeros")
|
| 95 |
+
|
| 96 |
+
# Assert
|
| 97 |
+
assert padding in ["valid", "same", "causal"]
|
| 98 |
+
|
| 99 |
+
# Padding
|
| 100 |
+
if padding == "valid":
|
| 101 |
+
self.pre_padding = None
|
| 102 |
+
elif padding == "same":
|
| 103 |
+
self.pre_padding = nn.ConstantPad1d(padding=((kernel_size - 1) // 2, (kernel_size - 1) // 2), value=0)
|
| 104 |
+
elif padding == "causal":
|
| 105 |
+
self.pre_padding = nn.ConstantPad1d(padding=(kernel_size - 1, 0), value=0)
|
| 106 |
+
|
| 107 |
+
# Variational Noise
|
| 108 |
+
self.noise = None
|
| 109 |
+
self.vn_std = None
|
| 110 |
+
|
| 111 |
+
def init_vn(self, vn_std):
|
| 112 |
+
|
| 113 |
+
# Variational Noise
|
| 114 |
+
self.vn_std = vn_std
|
| 115 |
+
|
| 116 |
+
def sample_synaptic_noise(self, distributed):
|
| 117 |
+
|
| 118 |
+
# Sample Noise
|
| 119 |
+
self.noise = torch.normal(mean=0.0, std=1.0, size=self.weight.size(), device=self.weight.device, dtype=self.weight.dtype)
|
| 120 |
+
|
| 121 |
+
# Broadcast Noise
|
| 122 |
+
if distributed:
|
| 123 |
+
torch.distributed.broadcast(self.noise, 0)
|
| 124 |
+
|
| 125 |
+
def forward(self, input):
|
| 126 |
+
|
| 127 |
+
# Weight
|
| 128 |
+
weight = self.weight
|
| 129 |
+
|
| 130 |
+
# Add Noise
|
| 131 |
+
if self.noise is not None and self.training:
|
| 132 |
+
weight = weight + self.vn_std * self.noise
|
| 133 |
+
|
| 134 |
+
# Padding
|
| 135 |
+
if self.pre_padding is not None:
|
| 136 |
+
input = self.pre_padding(input)
|
| 137 |
+
|
| 138 |
+
# Apply Weight
|
| 139 |
+
return F.conv1d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class ConvolutionModule(nn.Module):
|
| 143 |
+
"""Conformer Convolution Module
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
dim_model: input feature dimension
|
| 147 |
+
dim_expand: output feature dimension
|
| 148 |
+
kernel_size: 1D depthwise convolution kernel size
|
| 149 |
+
Pdrop: residual dropout probability
|
| 150 |
+
stride: 1D depthwise convolution stride
|
| 151 |
+
padding: "valid", "same" or "causal"
|
| 152 |
+
|
| 153 |
+
Input: (batch size, input length, dim_model)
|
| 154 |
+
Output: (batch size, output length, dim_expand)
|
| 155 |
+
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
def __init__(self, dim_model, dim_expand, kernel_size, Pdrop, stride, padding):
|
| 159 |
+
super(ConvolutionModule, self).__init__()
|
| 160 |
+
|
| 161 |
+
# Layers
|
| 162 |
+
self.layers = nn.Sequential(
|
| 163 |
+
nn.LayerNorm(dim_model, eps=1e-6),
|
| 164 |
+
Transpose(1, 2),
|
| 165 |
+
Conv1d(dim_model, 2 * dim_expand, kernel_size=1),
|
| 166 |
+
Glu(dim=1),
|
| 167 |
+
Conv1d(dim_expand, dim_expand, kernel_size, stride=stride, padding=padding, groups=dim_expand),
|
| 168 |
+
nn.BatchNorm1d(dim_expand),
|
| 169 |
+
Swish(),
|
| 170 |
+
Conv1d(dim_expand, dim_expand, kernel_size=1),
|
| 171 |
+
Transpose(1, 2),
|
| 172 |
+
nn.Dropout(p=Pdrop)
|
| 173 |
+
)
|
| 174 |
+
self.ln = nn.LayerNorm(dim_expand)
|
| 175 |
+
|
| 176 |
+
def forward(self, x):
|
| 177 |
+
return self.ln(self.layers(x)+x)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class BasicLayerDec(nn.Module):
|
| 181 |
+
""" A basic Swin Transformer layer for one stage.
|
| 182 |
+
Args:
|
| 183 |
+
dim (int): Number of input channels.
|
| 184 |
+
input_resolution (tuple[int]): Input resolution.
|
| 185 |
+
depth (int): Number of blocks.
|
| 186 |
+
num_heads (int): Number of attention heads.
|
| 187 |
+
window_size (int): Local window size.
|
| 188 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 189 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 190 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 191 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 192 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 193 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
| 194 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 195 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
| 196 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
| 200 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
| 201 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
| 202 |
+
norm_before_mlp='ln'):
|
| 203 |
+
|
| 204 |
+
super().__init__()
|
| 205 |
+
self.dim = dim
|
| 206 |
+
self.input_resolution = input_resolution
|
| 207 |
+
self.depth = depth
|
| 208 |
+
self.use_checkpoint = use_checkpoint
|
| 209 |
+
|
| 210 |
+
# build blocks
|
| 211 |
+
self.blocks = nn.ModuleList([
|
| 212 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
| 213 |
+
num_heads=num_heads, window_size=window_size,
|
| 214 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
| 215 |
+
mlp_ratio=mlp_ratio,
|
| 216 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 217 |
+
drop=drop, attn_drop=attn_drop,
|
| 218 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 219 |
+
norm_layer=norm_layer, norm_before_mlp=norm_before_mlp)
|
| 220 |
+
for i in range(depth)])
|
| 221 |
+
|
| 222 |
+
# patch merging layer
|
| 223 |
+
if downsample is not None:
|
| 224 |
+
self.downsample = downsample((input_resolution[0]//2, input_resolution[1]//2), dim=dim * 2, norm_layer=norm_layer)
|
| 225 |
+
else:
|
| 226 |
+
self.downsample = None
|
| 227 |
+
|
| 228 |
+
def forward(self, x):
|
| 229 |
+
attns = []
|
| 230 |
+
if self.downsample is not None:
|
| 231 |
+
x = self.downsample(x)
|
| 232 |
+
for blk in self.blocks:
|
| 233 |
+
if self.use_checkpoint:
|
| 234 |
+
x = checkpoint.checkpoint(blk, x)
|
| 235 |
+
else:
|
| 236 |
+
x, attn = blk(x)
|
| 237 |
+
if not self.training:
|
| 238 |
+
attns.append(attn.unsqueeze(0))
|
| 239 |
+
if not self.training:
|
| 240 |
+
attn = torch.cat(attns, dim = 0)
|
| 241 |
+
attn = torch.mean(attn, dim = 0)
|
| 242 |
+
return x, attn
|
| 243 |
+
|
| 244 |
+
def extra_repr(self):
|
| 245 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class PatchExpand(nn.Module):
|
| 249 |
+
def __init__(self, input_resolution, dim, dim_scale=2, norm_layer=nn.LayerNorm):
|
| 250 |
+
super().__init__()
|
| 251 |
+
self.input_resolution = input_resolution
|
| 252 |
+
self.dim = dim
|
| 253 |
+
self.expand = nn.Linear(dim, 2 * dim, bias=False) if dim_scale == 2 else nn.Identity()
|
| 254 |
+
self.norm = norm_layer(dim // dim_scale)
|
| 255 |
+
|
| 256 |
+
def forward(self, x):
|
| 257 |
+
"""
|
| 258 |
+
x: B, H*W, C
|
| 259 |
+
"""
|
| 260 |
+
H, W = self.input_resolution
|
| 261 |
+
x = self.expand(x)
|
| 262 |
+
B, L, C = x.shape
|
| 263 |
+
assert L == H * W, "input feature has wrong size"
|
| 264 |
+
|
| 265 |
+
x = x.view(B, H, W, C)
|
| 266 |
+
# This is the original implementation in SwinUnet
|
| 267 |
+
# x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=2, p2=2, c=C // 4)
|
| 268 |
+
|
| 269 |
+
# here is our implementation
|
| 270 |
+
# can reverse patch-emerging in Swin-Transformer encoder, seems helpful
|
| 271 |
+
x0, x2, x1, x3 = x.chunk(4, dim=-1)
|
| 272 |
+
x = torch.stack((x0, x1, x2, x3), dim=-1)
|
| 273 |
+
x = torch.chunk(x, C // 4, dim=-2)
|
| 274 |
+
x = torch.concat(x, dim=-1).squeeze(-2)
|
| 275 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
| 276 |
+
x = torch.nn.functional.pixel_shuffle(x, 2)
|
| 277 |
+
x = rearrange(x, 'b c h w -> b h w c')
|
| 278 |
+
x = x.view(B, -1, C // 4)
|
| 279 |
+
x = self.norm(x)
|
| 280 |
+
|
| 281 |
+
return x
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
class InversePatchEmbed(nn.Module):
|
| 285 |
+
"""
|
| 286 |
+
Patch Embedding to 2D Image.
|
| 287 |
+
"""
|
| 288 |
+
|
| 289 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True,
|
| 290 |
+
patch_stride=16):
|
| 291 |
+
super().__init__()
|
| 292 |
+
img_size = to_2tuple(img_size)
|
| 293 |
+
patch_size = to_2tuple(patch_size)
|
| 294 |
+
patch_stride = to_2tuple(patch_stride)
|
| 295 |
+
self.img_size = img_size
|
| 296 |
+
self.patch_size = patch_size
|
| 297 |
+
self.patch_stride = patch_stride
|
| 298 |
+
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
|
| 299 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
| 300 |
+
self.flatten = flatten
|
| 301 |
+
self.in_chans = in_chans
|
| 302 |
+
self.embed_dim = embed_dim
|
| 303 |
+
|
| 304 |
+
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
|
| 305 |
+
|
| 306 |
+
self.proj = nn.ConvTranspose2d(embed_dim, in_chans, kernel_size=patch_size, stride=patch_stride, padding=padding)
|
| 307 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 308 |
+
|
| 309 |
+
def forward(self, x):
|
| 310 |
+
# B, C, H, W = x.shape
|
| 311 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
| 312 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 313 |
+
x = self.norm(x)
|
| 314 |
+
if self.flatten:
|
| 315 |
+
# x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
| 316 |
+
x = x.transpose(1, 2).unflatten(2, self.grid_size).contiguous() # BNC -> BCHW
|
| 317 |
+
x = self.proj(x)
|
| 318 |
+
|
| 319 |
+
return x
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
class HTSAT_Decoder(nn.Module):
|
| 323 |
+
r"""HTSAT_decoder based on the Swin Transformer
|
| 324 |
+
Args:
|
| 325 |
+
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
|
| 326 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
| 327 |
+
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
|
| 328 |
+
in_chans (int): Number of input image channels. Default: 1 (mono)
|
| 329 |
+
num_classes (int): Number of classes for classification head. Default: 527
|
| 330 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
| 331 |
+
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
|
| 332 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
| 333 |
+
window_size (int): Window size. Default: 8
|
| 334 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
| 335 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 336 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
| 337 |
+
drop_rate (float): Dropout rate. Default: 0
|
| 338 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
| 339 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
| 340 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
| 341 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
| 342 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
| 343 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
| 344 |
+
"""
|
| 345 |
+
|
| 346 |
+
def __init__(self, lan_embed_dim=512, spec_size=256, patch_size=4, patch_stride=(4, 4),
|
| 347 |
+
in_chans=1, num_classes=527,
|
| 348 |
+
embed_dim=48, depths=[1, 1, 1, 1], num_heads=[4, 8, 16, 32],
|
| 349 |
+
window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 350 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
| 351 |
+
norm_layer=nn.LayerNorm,
|
| 352 |
+
ape=False, patch_norm=True,
|
| 353 |
+
use_checkpoint=False, norm_before_mlp='ln', encoder_embed_dim=96, phase=False,
|
| 354 |
+
spec_factor=8, d_attn=640, n_masker_layer=4, conv=False):
|
| 355 |
+
super(HTSAT_Decoder, self).__init__()
|
| 356 |
+
self.mel_bins = 64
|
| 357 |
+
self.spec_size = spec_size
|
| 358 |
+
self.phase = phase
|
| 359 |
+
self.patch_stride = patch_stride
|
| 360 |
+
self.patch_size = patch_size
|
| 361 |
+
self.window_size = window_size
|
| 362 |
+
self.embed_dim = embed_dim
|
| 363 |
+
self.depths = depths
|
| 364 |
+
self.ape = ape
|
| 365 |
+
self.in_chans = in_chans
|
| 366 |
+
self.num_classes = num_classes
|
| 367 |
+
self.num_heads = num_heads
|
| 368 |
+
self.num_layers = len(self.depths)
|
| 369 |
+
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
|
| 370 |
+
|
| 371 |
+
self.drop_rate = drop_rate
|
| 372 |
+
self.attn_drop_rate = attn_drop_rate
|
| 373 |
+
self.drop_path_rate = drop_path_rate
|
| 374 |
+
|
| 375 |
+
self.qkv_bias = qkv_bias
|
| 376 |
+
self.qk_scale = None
|
| 377 |
+
|
| 378 |
+
self.patch_norm = patch_norm
|
| 379 |
+
self.norm_layer = norm_layer if self.patch_norm else None
|
| 380 |
+
self.norm_before_mlp = norm_before_mlp
|
| 381 |
+
self.mlp_ratio = mlp_ratio
|
| 382 |
+
|
| 383 |
+
self.use_checkpoint = use_checkpoint
|
| 384 |
+
|
| 385 |
+
# process mel-spec ; used only once
|
| 386 |
+
self.freq_ratio = self.spec_size // self.mel_bins
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
# split spctrogram into non-overlapping patches
|
| 390 |
+
self.inverse_patch_embed = InversePatchEmbed(
|
| 391 |
+
img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans,
|
| 392 |
+
embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride=patch_stride)
|
| 393 |
+
|
| 394 |
+
patches_resolution = self.inverse_patch_embed.grid_size
|
| 395 |
+
self.patches_resolution = patches_resolution
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
# stochastic depth
|
| 399 |
+
dpr = [x.item() for x in
|
| 400 |
+
torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule
|
| 401 |
+
|
| 402 |
+
# build layers
|
| 403 |
+
self.layers = nn.ModuleList()
|
| 404 |
+
self.skip = nn.ModuleList()
|
| 405 |
+
for i_layer in range(self.num_layers):
|
| 406 |
+
layer = BasicLayerDec(dim=int(self.embed_dim * 2 ** i_layer),
|
| 407 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
| 408 |
+
patches_resolution[1] // (2 ** i_layer)),
|
| 409 |
+
depth=self.depths[i_layer],
|
| 410 |
+
num_heads=self.num_heads[i_layer],
|
| 411 |
+
window_size=self.window_size,
|
| 412 |
+
mlp_ratio=self.mlp_ratio,
|
| 413 |
+
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
|
| 414 |
+
drop=self.drop_rate, attn_drop=self.attn_drop_rate,
|
| 415 |
+
drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
|
| 416 |
+
norm_layer=self.norm_layer,
|
| 417 |
+
downsample=PatchExpand if (i_layer < self.num_layers - 1) else None,
|
| 418 |
+
use_checkpoint=use_checkpoint,
|
| 419 |
+
norm_before_mlp=self.norm_before_mlp)
|
| 420 |
+
self.layers.append(layer)
|
| 421 |
+
self.skip.append(
|
| 422 |
+
SkipTrans(embed_dim=lan_embed_dim, in_features=int(encoder_embed_dim * 2 ** i_layer), out_features=int(self.embed_dim * 2 ** i_layer)),
|
| 423 |
+
)
|
| 424 |
+
self.layers = self.layers[::-1]
|
| 425 |
+
self.skip = self.skip[::-1]
|
| 426 |
+
# self.skip.append(
|
| 427 |
+
# SkipTrans(embed_dim=lan_embed_dim, in_features=self.mel_bins, out_features=self.mel_bins),
|
| 428 |
+
# )
|
| 429 |
+
|
| 430 |
+
d_spec = self.mel_bins * spec_factor + 1
|
| 431 |
+
|
| 432 |
+
self.spec_norm = nn.BatchNorm2d(d_spec, momentum=0.01)
|
| 433 |
+
self.conv = conv
|
| 434 |
+
if not conv:
|
| 435 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model=d_attn, nhead=8,
|
| 436 |
+
dim_feedforward=int(d_attn * self.mlp_ratio),
|
| 437 |
+
batch_first=True, dropout=0)
|
| 438 |
+
transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=n_masker_layer)
|
| 439 |
+
|
| 440 |
+
self.mask_net = nn.Sequential(
|
| 441 |
+
nn.Linear(self.mel_bins + d_spec, d_attn),
|
| 442 |
+
nn.LayerNorm(d_attn),
|
| 443 |
+
transformer_encoder,
|
| 444 |
+
nn.Linear(d_attn, d_spec)
|
| 445 |
+
)
|
| 446 |
+
else:
|
| 447 |
+
self.mask_net = nn.Sequential(
|
| 448 |
+
nn.Linear(self.mel_bins + d_spec, d_spec),
|
| 449 |
+
nn.LayerNorm(d_spec),
|
| 450 |
+
*[ConvolutionModule(dim_model=d_spec, dim_expand=d_spec, kernel_size=9, padding='same',
|
| 451 |
+
Pdrop=0, stride=1) for i in range(n_masker_layer)]
|
| 452 |
+
)
|
| 453 |
+
if self.phase:
|
| 454 |
+
self.phase_net = nn.Sequential(
|
| 455 |
+
nn.Linear(self.mel_bins + d_spec, d_spec * 2),
|
| 456 |
+
nn.LayerNorm(d_spec * 2),
|
| 457 |
+
*[ConvolutionModule(dim_model=d_spec * 2, dim_expand=d_spec * 2, kernel_size=9, padding='same',
|
| 458 |
+
Pdrop=0, stride=1) for i in range(n_masker_layer)]
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
self.film = SkipTrans(embed_dim=lan_embed_dim, in_features=encoder_embed_dim * 8, out_features=self.num_features)
|
| 462 |
+
|
| 463 |
+
self.apply(self._init_weights)
|
| 464 |
+
|
| 465 |
+
def _init_weights(self, m):
|
| 466 |
+
if isinstance(m, nn.Linear):
|
| 467 |
+
trunc_normal_(m.weight, std=.02)
|
| 468 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 469 |
+
nn.init.constant_(m.bias, 0)
|
| 470 |
+
elif isinstance(m, nn.LayerNorm):
|
| 471 |
+
nn.init.constant_(m.bias, 0)
|
| 472 |
+
nn.init.constant_(m.weight, 1.0)
|
| 473 |
+
|
| 474 |
+
# @torch.jit.ignore
|
| 475 |
+
# def no_weight_decay(self):
|
| 476 |
+
# return {'absolute_pos_embed'}
|
| 477 |
+
#
|
| 478 |
+
# @torch.jit.ignore
|
| 479 |
+
# def no_weight_decay_keywords(self):
|
| 480 |
+
# return {'relative_position_bias_table'}
|
| 481 |
+
|
| 482 |
+
def forward(self, hidden_state, skip_features, embed):
|
| 483 |
+
skip_features = skip_features[::-1]
|
| 484 |
+
# hidden_state = torch.randn(hidden_state.shape).type_as(hidden_state)
|
| 485 |
+
|
| 486 |
+
spec = skip_features[-1]
|
| 487 |
+
|
| 488 |
+
h = self.film(hidden_state, embed)
|
| 489 |
+
|
| 490 |
+
for i, (layer, f, skip) in enumerate(zip(self.layers, skip_features, self.skip)):
|
| 491 |
+
h = layer(h)[0]
|
| 492 |
+
h = skip(skip=f, embed=embed, x=h)
|
| 493 |
+
|
| 494 |
+
h = self.reshape_img2wav(self.inverse_patch_embed(h)).squeeze(1)
|
| 495 |
+
|
| 496 |
+
h = h[:, :spec.size(2), :]
|
| 497 |
+
|
| 498 |
+
spec = spec.transpose(1, 3)
|
| 499 |
+
|
| 500 |
+
spec = self.spec_norm(spec).transpose(1, 3).squeeze(1)
|
| 501 |
+
|
| 502 |
+
h = torch.concat([spec, h], dim=-1)
|
| 503 |
+
|
| 504 |
+
mask = self.mask_net(h).unsqueeze(1)
|
| 505 |
+
|
| 506 |
+
if self.phase:
|
| 507 |
+
mask_r, mask_i = torch.chunk(self.phase_net(h).unsqueeze(1), chunks=2, dim=-1)
|
| 508 |
+
return torch.sigmoid(mask), torch.tanh(mask_r), torch.tanh(mask_i)
|
| 509 |
+
else:
|
| 510 |
+
return torch.sigmoid(mask)
|
| 511 |
+
|
| 512 |
+
def reshape_img2wav(self, x):
|
| 513 |
+
# (B, 1, 256, 256)
|
| 514 |
+
x = x.reshape(x.shape[0], x.shape[1], self.freq_ratio, x.shape[2]//self.freq_ratio, x.shape[3]) # (B, 1, 4, 64, 256)
|
| 515 |
+
x = x.permute(0, 1, 3, 2, 4).contiguous()
|
| 516 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2], x.shape[3] * x.shape[4])
|
| 517 |
+
x = x.permute(0, 1, 3, 2).contiguous()
|
| 518 |
+
return x
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
# if __name__ == "__main__":
|
| 522 |
+
# import torch
|
| 523 |
+
# from msclap import CLAP
|
| 524 |
+
# import os
|
| 525 |
+
# import torchaudio
|
| 526 |
+
# import torchaudio.transforms as T
|
| 527 |
+
# import numpy as np
|
| 528 |
+
# import random
|
| 529 |
+
# from torchlibrosa import Spectrogram, LogmelFilterBank
|
| 530 |
+
# clap_model = CLAP(model_fp="/home/user/202212661/clapsep/Waveformer-main/checkpoint_path/CLAP_weights_2023.pth",
|
| 531 |
+
# version='2023', use_cuda=True)
|
| 532 |
+
# text_data = [
|
| 533 |
+
# "Acoustic_guitar", "Applause", "Bark", "Bass_drum", "Burping_or_eructation",
|
| 534 |
+
# "Bus", "Cello", "Chime", "Clarinet", "Computer_keyboard",
|
| 535 |
+
# "Cough", "Cowbell", "Double_bass", "Drawer_open_or_close", "Electric_piano",
|
| 536 |
+
# "Fart", "Finger_snapping", "Fireworks", "Flute", "Glockenspiel",
|
| 537 |
+
# "Gong", "Gunshot_or_gunfire", "Harmonica", "Hi-hat", "Keys_jangling",
|
| 538 |
+
# "Knock", "Laughter", "Meow", "Microwave_oven", "Oboe",
|
| 539 |
+
# "Saxophone", "Scissors", "Shatter", "Snare_drum", "Squeak",
|
| 540 |
+
# "Tambourine", "Tearing", "Telephone", "Trumpet", "Violin_or_fiddle",
|
| 541 |
+
# "Writing"]
|
| 542 |
+
# # Extract text embeddings
|
| 543 |
+
# text_embeddings = clap_model.get_text_embeddings(text_data)
|
| 544 |
+
# path = "/home/user/202212661/clapsep/Waveformer-main/data/FSDSoundScapes/FSDKaggle2018/train/Tearing/2232ce13.wav"
|
| 545 |
+
# # Extract audio embeddings
|
| 546 |
+
# audio_embeddings_ = clap_model.get_audio_embeddings([path])
|
| 547 |
+
#
|
| 548 |
+
# window = 'hann'
|
| 549 |
+
# center = True
|
| 550 |
+
# pad_mode = 'reflect'
|
| 551 |
+
# ref = 1.0
|
| 552 |
+
# amin = 1e-10
|
| 553 |
+
# top_db = None
|
| 554 |
+
#
|
| 555 |
+
# spectrogram_extractor = Spectrogram(n_fft=512, hop_length=160,
|
| 556 |
+
# win_length=512, window=window, center=center, pad_mode=pad_mode,
|
| 557 |
+
# freeze_parameters=True).cuda()
|
| 558 |
+
# # Logmel feature extractor
|
| 559 |
+
# logmel_extractor = LogmelFilterBank(sr=16000, n_fft=512,
|
| 560 |
+
# n_mels=64, fmin=0, fmax=8000, ref=ref, amin=amin,
|
| 561 |
+
# top_db=top_db,
|
| 562 |
+
# freeze_parameters=True).cuda()
|
| 563 |
+
#
|
| 564 |
+
# clap_model.clap.audio_encoder.base.htsat.spectrogram_extractor = spectrogram_extractor
|
| 565 |
+
# clap_model.clap.audio_encoder.base.htsat.logmel_extractor = logmel_extractor
|
| 566 |
+
#
|
| 567 |
+
# features = []
|
| 568 |
+
#
|
| 569 |
+
#
|
| 570 |
+
# def get_features_list(module, input, output):
|
| 571 |
+
# features.append(output)
|
| 572 |
+
#
|
| 573 |
+
#
|
| 574 |
+
# def get_features_list_basic_layer(module, input, output):
|
| 575 |
+
# features.append(output[0])
|
| 576 |
+
#
|
| 577 |
+
#
|
| 578 |
+
# clap_model.clap.audio_encoder.base.htsat.patch_embed.register_forward_hook(get_features_list)
|
| 579 |
+
# for module in clap_model.clap.audio_encoder.base.htsat.layers:
|
| 580 |
+
# module.register_forward_hook(get_features_list_basic_layer)
|
| 581 |
+
#
|
| 582 |
+
# audio_time_series, sample_rate = torchaudio.load(path)
|
| 583 |
+
# resample_rate = 16000
|
| 584 |
+
# if resample_rate != sample_rate:
|
| 585 |
+
# resampler = T.Resample(sample_rate, resample_rate)
|
| 586 |
+
# audio_time_series = resampler(audio_time_series)
|
| 587 |
+
#
|
| 588 |
+
# sample_rate = resample_rate
|
| 589 |
+
# audio_duration = 10
|
| 590 |
+
# audio_time_series = audio_time_series.reshape(-1)
|
| 591 |
+
# if audio_duration * sample_rate >= audio_time_series.shape[0]:
|
| 592 |
+
# repeat_factor = int(np.ceil((audio_duration * sample_rate) /
|
| 593 |
+
# audio_time_series.shape[0]))
|
| 594 |
+
# # Repeat audio_time_series by repeat_factor to match audio_duration
|
| 595 |
+
# audio_time_series = audio_time_series.repeat(repeat_factor)
|
| 596 |
+
# # remove excess part of audio_time_series
|
| 597 |
+
# audio_time_series = audio_time_series[0:audio_duration * sample_rate]
|
| 598 |
+
# else:
|
| 599 |
+
# # audio_time_series is longer than predefined audio duration,
|
| 600 |
+
# # so audio_time_series is trimmed
|
| 601 |
+
# start_index = random.randrange(
|
| 602 |
+
# audio_time_series.shape[0] - audio_duration * sample_rate)
|
| 603 |
+
# audio_time_series = audio_time_series[start_index:start_index +
|
| 604 |
+
# audio_duration * sample_rate]
|
| 605 |
+
#
|
model/best_model.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6fcc8dbcd7174af86266cf16b4105eced0802352762f81dbfefdce29af3dba04
|
| 3 |
+
size 177818986
|
model/music_audioset_epoch_15_esc_90.14.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fae3e9c087f2909c28a09dc31c8dfcdacbc42ba44c70e972b58c1bd1caf6dedd
|
| 3 |
+
size 2352471003
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
librosa
|
| 3 |
+
torchaudio
|
| 4 |
+
torchlibrosa
|
| 5 |
+
numpy
|
| 6 |
+
einops
|
| 7 |
+
loralib
|
| 8 |
+
laion-clap
|