File size: 13,237 Bytes
c31d1ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import re
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from logger import get_logger # pylint: disable=import-error


logger = get_logger(__name__)

def clean_string(vars : list) -> list: # pylint: disable=redefined-builtin
    """
    Funciton to manipulate and "clean" string values

    Args:
        vars (list): list of string variables to manipulate

    Returns:
        list: cleaned list of strings
    """
    try:
        clean_vars = []
        if isinstance(vars, str):
            vars = [vars]
        for s in vars:
            temp = re.sub(r'[^a-z0-9\s]','',s.strip().lower())
            temp = re.sub(r'\s+', '_', temp)
            clean_vars.append(temp)
        return clean_vars
    except Exception as e:
        logger.error("Error cleaning string : %s", e)
        raise         

def mandatory_column_check(df : pd.DataFrame, columns : list) -> bool:
    """
    Function to check if the given columnsa re present in the dataframe

    Args:
        df (pd.DataFrame): Dataframe to check for columns presence
        columns (list): Mandatory columns to check for

    Returns:
        bool: Boolean value representing status
    """
    try:
        if isinstance(columns, str):
            columns = [columns]
        missing_col = []
        df_headers_list = df.columns.to_list()
        mandatory_columns = clean_string(vars = columns)
        df_headers = clean_string(vars= df_headers_list)
        for col in mandatory_columns:
            if col.lower() not in [s.lower() for s in df_headers]:
                missing_col.append(col)
        if len(missing_col) >= 1:
            return False
        else:
            return True
    except Exception as e:
        logger.error("Error checking for mandatory columns : %s", e)
        raise

def drop_dataframe_columns(df : pd.DataFrame, columns: list) -> pd.DataFrame:
    """
    Function to drop columns form a dataframe

    Args:
        df (pd.DataFrame): Dataframe to manipulate
        columns (list): Columns to be dropped from the dataframe

    Returns:
        pd.DataFrame: Formatted fataframe
    """
    try:
        final_df = df.drop(columns=columns)
        return final_df
    except Exception as e:
        logger.error("Error droping columns : %s", e)
        raise

def dataframe_join(df1 :pd.DataFrame, df2 : pd.DataFrame,
                   join_column: str) -> pd.DataFrame:
    """ 
    Function to join different dataframes on a paticular column

    Args:
        df1 (pd.DataFrame): Left dataframe
        df2 (pd.DataFrame): Right dataframe
        join_column (str): Join column

    Returns:
        pd.DataFrame: Cross join of both dataframes
    """
    try:
        formatted_join_col = clean_string(join_column)[0]
        df_list = [df1, df2]
        for i in range(len(df_list)): # pylint: disable=consider-using-enumerate
            for col in df_list[i]:
                formatted_col_name = clean_string(col)
                df_list[i].rename(columns={col: formatted_col_name[0]}, inplace=True)
        merged_df = pd.merge(df1, df2, on=formatted_join_col, how ='inner')
        return merged_df
    except Exception as e:
        logger.error("Error merging dataframes : %s", e)
        raise

def marks_custom_encoder(df : pd.DataFrame) -> pd.DataFrame:
    """
    Function to implement custom one hot encoding for categorical variables

    Args:
        df (pd.DataFrame): Dataframe to manipulate

    Returns:
        pd.DataFrame: Updated dataframe with one hot encoded columns
    """
    try:
        barre_chords_temp = ["F", "F♯", "G♯", "A♯", "B","Fm", "F♯m", "Gm", "G♯m","A♯m",
                            "Bm","Bb", "Cm", "C♯m", "D♯m","F7", "F♯7", "G♯7", "A♯7", 
                            "C♯7", "D♯7","Fm7","F♯m7", "Gm7", "G♯m7", "Am7", "A♯m7",
                            "Bm7", "Cm7", "C♯m7", "Dm7", "D♯m7", "E7"]
        major_minor_chords_temp = ["A", "C", "D", "E", "G", "Am", "Dm", "Em"]
        special_chords = []
        df['formatted_chords'] = df['chords'].apply(lambda x:
            re.sub(r'\s+', ' ', re.sub(r'<[^>]+>', '', x)).strip())
        all_chords = set(chord for row in df['formatted_chords'] for chord in row.split()) # pylint: disable=redefined-outer-name
        barre_chords = [x.lower() for x in barre_chords_temp]
        barre_chords = [x for x in barre_chords if x not in major_minor_chords_temp]
        major_minor_chords = [x.lower() for x in major_minor_chords_temp]
        for chord in all_chords:
            if chord.lower() not in barre_chords and chord.lower() not in major_minor_chords:
                special_chords.append(chord)

        df['song_length_temp'] = df['formatted_chords'].apply(lambda x: len(x)) # pylint: disable=unnecessary-lambda
        df['song_length'] = (((df['song_length_temp'] - df['song_length_temp'].min())/
                              (df['song_length_temp'].max()-df['song_length_temp'].min()))) * 15
        df['distinct_chords'] = df["formatted_chords"].apply(lambda x: set(x.split()))
        df['barre_chords_metric'] = (df['distinct_chords'].apply(lambda x:
            sum(chord in barre_chords_temp for chord in x)) * 2)
        df['major_minor_chords_metric'] = df['distinct_chords'].apply(lambda x:
            sum(chord in major_minor_chords_temp for chord in x))
        df['special_chords'] = (df['distinct_chords'].apply(lambda x:
            sum(chord in special_chords for chord in x)) * 3)
        return df
    except Exception as e:
        logger.error("Error one hot encoding data : %s", e)
        raise

def exercise_custom_encoder(df: pd.DataFrame)-> pd.DataFrame :
    """
    Function to encode features in the exercise dataframe

    Args:
        df (pd.DataFrame): Dataframe to manipulate

    Returns:
        pd.DataFrame: Resultant dtaframe
    """
    try:
        barre_chords_temp = ["F", "F♯", "G♯", "A♯", "B","Fm", "F♯m", "Gm", "G♯m","A♯m",
                            "Bm","Bb", "Cm", "C♯m", "D♯m","F7", "F♯7", "G♯7", "A♯7", 
                            "C♯7", "D♯7","Fm7","F♯m7", "Gm7", "G♯m7", "Am7", "A♯m7",
                            "Bm7", "Cm7", "C♯m7", "Dm7", "D♯m7", "E7"]
        major_minor_chords_temp = ["A", "C", "D", "E", "G", "Am", "Dm", "Em"]
        special_chords = []
        df_exploded = df['chord_progression'].str.split(',').explode()
        all_chords = df_exploded.unique().tolist() # pylint: disable=redefined-outer-name
        barre_chords = [x.lower() for x in barre_chords_temp]
        barre_chords = [x for x in barre_chords if x not in major_minor_chords_temp]
        major_minor_chords = [x.lower() for x in major_minor_chords_temp]
        for chord in all_chords:
            if chord.lower() not in barre_chords and chord.lower() not in major_minor_chords:
                special_chords.append(chord)    
        df['barre_chords_metric'] = (df['chord_progression'].apply(lambda x:
        sum(chord in barre_chords_temp for chord in x)) * 2)
        df['major_minor_chords_metric'] = df['chord_progression'].apply(lambda x:
            sum(chord in major_minor_chords_temp for chord in x))
        df['special_chords'] = (df['chord_progression'].apply(lambda x:
            sum(chord in special_chords for chord in x)) * 3)
        df['tempo_mattric'] = ((df['tempo'] - 40) / (200 - 40))
        return df
    except Exception as e:
        logger.error("Error encoding exercise data : %s", e)
        raise

def get_universal_chords (df: pd.DataFrame) -> list:
    """
    Function to get a list of all chords

    Args:
        df (pd.DataFrame): Dtaframe to extract chords cfrom
        columns (list): Chord column name

    Returns:
        list: List of all unqieu chords
    """
    try:
        df['formatted_chords'] = df['chords'].apply(lambda x:
            re.sub(r'\s+', ' ', re.sub(r'<[^>]+>', '', x)).strip())
        all_chords_list = set(chord for row in df['formatted_chords'] for chord in row.split())
        return all_chords_list
    except Exception as e:
        logger.error("Error getting universal chords list : %s", e)
        raise

def chords_to_vector(chord_list, universal_chords):
    """
    Convert list of chords into a binary vector based on universal chords.
    """
    try:
        return [1 if chord in chord_list else 0 for chord in universal_chords]
    except Exception as e:
        logger.error("Error in coverting chord to vector : 5s", e)
        raise
    
def scaler_function(df:pd.DataFrame, columns:list)-> pd.DataFrame:
    """
    Function to create and scale feature vectors

    Args:
        df (pd.DataFrame): Dataframe to manipulate
        columns (list): Columns to engineer

    Returns:
        pd.DataFrame: Resultant Dataframe
    """
    try:
        if isinstance(columns, str):
            columns = [columns]
        scaler = MinMaxScaler()
        chords_scaled = scaler.fit_transform(df[columns])
        df_scaled = pd.DataFrame(chords_scaled,columns=[c + "_scaled" for c in columns])
        df = pd.concat([df.reset_index(drop=True), df_scaled.reset_index(drop=True)], axis=1)
        return df
    except Exception as e:
        logger.error("Error in scaling columns: 5s", e)
        raise

def create_feature_vector(df:pd.DataFrame, columns:list)-> pd.DataFrame:
    """
    Function to create final feature vector

    Args:
        df (pd.DataFrame): Dataframe to manipulate
        columns (list): _descriColumns to engineerption_

    Returns:
        pd.DataFrame: Resultant Dataframe
    """
    try:
        df['feature_vector'] = df.apply(
        lambda row: row['chord_vector'] + [row[col] for col in columns],
        axis=1)
        return df
    except Exception as e:
        logger.error("Error in creating feature vectors: 5s", e)
        raise

def exercise_build_vector(row): # pylint: disable=missing-function-docstring
    try:        
        feature_cols = ['barre_chords_metric_scaled','major_minor_chords_metric_scaled',
                        'special_chords_scaled','tempo_mattric_scaled']
        chord_vec = list(row['chord_vector'])
        extra = [float(row[col]) for col in feature_cols]
        return chord_vec + extra
    except Exception as e:
        logger.error("Error in building feature vector for exercise df: 5s", e)
        raise

def marks_build_vector(row): # pylint: disable=missing-function-docstring
    try:
        feature_cols = ['barre_chords_metric_scaled','major_minor_chords_metric_scaled',
                        'special_chords_scaled','song_length_scaled']
        chord_vec = list(row['chord_vector'])
        extra = [float(row[col]) for col in feature_cols]
        return chord_vec + extra
    except Exception as e:
        logger.error("Error in c\building feature vector for marks df: 5s", e)
        raise


if __name__ == '__main__':
    base_dir = os.path.dirname(os.path.abspath(__file__))
    song_data_path = os.path.join(base_dir, '..','data','raw','songs_data.parquet')
    spotify_data_path = os.path.join(base_dir,'..','data','raw','spotify_tracks.parquet')
    exercise_data_path = os.path.join(base_dir, '..','data','raw','chord_exercises.csv')

    song_data = pd.read_parquet(song_data_path)
    spotify_data = pd.read_parquet(spotify_data_path)
    exercise_data = pd.read_csv(exercise_data_path)
    marks_data = dataframe_join(song_data, spotify_data, join_column='spotify_song_id')
    marks_data = drop_dataframe_columns(marks_data, columns=['id','releasedate','decade',
                                                             'rockgenre','artistid',
                                                             'spotifysongid','spotifyartistid'])
    marks_file_path = os.path.join(base_dir, '..', 'data', 'raw', 'marks_data.parquet')
    marks_data_ohe = marks_custom_encoder(df=marks_data)
    exercise_data_ohe = exercise_custom_encoder(exercise_data)
    all_chords = get_universal_chords(marks_data_ohe)
    marks_data_ohe['chord_vector'] = marks_data_ohe['distinct_chords'].apply(
        lambda x: chords_to_vector(x, all_chords))
    exercise_data_ohe['chord_vector'] = exercise_data_ohe['chord_progression'].apply(
        lambda x: chords_to_vector(x.split(','), all_chords)
    )
    exercise_data_final = scaler_function(
        df = exercise_data_ohe, columns=['barre_chords_metric', 
                                         'major_minor_chords_metric', 
                                         'special_chords','tempo_mattric'])
    exercise_data_final['feature_vector'] = exercise_data_final.apply(exercise_build_vector, axis=1)
    marks_data_final = scaler_function(df = marks_data_ohe, columns=
                                       ['barre_chords_metric', 'major_minor_chords_metric', 
                                        'special_chords','song_length'])
    marks_data_final['feature_vector'] = marks_data_final.apply(marks_build_vector, axis=1)
    
    marks_data_final.to_parquet(os.path.join(
        base_dir, '..', 'data', 'processed', 'marks_data.parquet'))
    exercise_data_ohe_path = os.path.join(
        base_dir, '..','data','processed','chord_exercises.parquet')
    exercise_data_final.to_parquet(exercise_data_ohe_path)