import os import gradio as gr import google.generativeai as genai """**How to get Google Gemini API Key?** - Go to https://aistudio.google.com/app/api-keys - Click "Create API Key" - Copy the API Key for your use """ GEMINI_API_KEY="AIzaSyBg1CYTTOfWBrOzgxBhBLqHjujx7qVurrM" genai.configure(api_key=GEMINI_API_KEY) """ - Similar to Gemini Model we can also use HuggingFace Transformer Models. - Reference links: https://python.langchain.com/docs/integrations/providers/huggingface , https://python.langchain.com/docs/integrations/llms/huggingface_hub.html """ # from langchain.llms import HuggingFacePipeline # hf = HuggingFacePipeline.from_model_id( # model_id="gpt2", # task="text-generation",) # Initialize Gemini model gemini_model = genai.GenerativeModel('gemini-1.5-flash') # Custom LLM wrapper for Gemini class GeminiLLM: def __init__(self, model): self.model = model self.memory_history = [] def predict(self, user_message): # Build conversation context full_prompt = "You are a helpful assistant to answer user queries.\n" for msg in self.memory_history: full_prompt += f"{msg}\n" full_prompt += f"User: {user_message}\nChatbot:" # Generate response response = self.model.generate_content(full_prompt) answer = response.text # Update memory self.memory_history.append(f"User: {user_message}") self.memory_history.append(f"Chatbot: {answer}") # Keep only last 10 exchanges if len(self.memory_history) > 20: self.memory_history = self.memory_history[-20:] return answer llm_chain = GeminiLLM(gemini_model) def get_text_response(user_message,history): response = llm_chain.predict(user_message = user_message) return response demo = gr.ChatInterface(get_text_response, examples=["How are you doing?","What are your interests?","Which places do you like to visit?"]) if __name__ == "__main__": demo.launch(debug=True) #To create a public link, set `share=True` in `launch()`. To enable errors and logs, set `debug=True` in `launch()`.