Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,25 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 3 |
-
import numpy as np
|
| 4 |
-
import pandas as pd
|
| 5 |
-
import re
|
| 6 |
from pydub import AudioSegment
|
| 7 |
from pydub.generators import Sine
|
| 8 |
import io
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
model_id = "openai/whisper-
|
| 13 |
|
| 14 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 15 |
model_id, low_cpu_mem_usage=True, use_safetensors=True
|
| 16 |
)
|
| 17 |
-
|
| 18 |
|
| 19 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 20 |
|
|
@@ -34,6 +39,25 @@ arabic_bad_Words = pd.read_csv("arabic_bad_words_dataset.csv")
|
|
| 34 |
english_bad_Words = pd.read_csv("english_bad_words_dataset.csv")
|
| 35 |
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def clean_english_word(word):
|
| 38 |
cleaned_text = re.sub(r'^[\s\W_]+|[\s\W_]+$', '', word)
|
| 39 |
return cleaned_text.lower()
|
|
@@ -95,7 +119,7 @@ def format_output_to_list(data):
|
|
| 95 |
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
|
| 96 |
return formatted_list
|
| 97 |
|
| 98 |
-
def
|
| 99 |
if input_audio is None:
|
| 100 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 101 |
|
|
@@ -129,31 +153,94 @@ def transcribe(input_audio, audio_language, task, timestamp_type):
|
|
| 129 |
|
| 130 |
return [text, timestamps, foul_words, (sample_rate, audio_data)]
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
examples = [
|
| 141 |
["arabic_english_audios/audios/arabic_audio_11.mp3", 'Arabic', 'transcribe', 'word'],
|
| 142 |
["arabic_english_audios/audios/arabic_audio_12.mp3", 'Arabic', 'transcribe', 'word'],
|
| 143 |
["arabic_english_audios/audios/arabic_audio_13.mp3", 'Arabic', 'transcribe', 'word'],
|
| 144 |
|
| 145 |
-
|
| 146 |
["arabic_english_audios/audios/english_audio_19.mp3", 'English', 'transcribe', 'word'],
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
["arabic_english_audios/audios/english_audio_23.mp3", 'English', 'transcribe', 'word'],
|
| 151 |
["arabic_english_audios/audios/english_audio_24.mp3", 'English', 'transcribe', 'word'],
|
| 152 |
["arabic_english_audios/audios/english_audio_25.mp3", 'English', 'transcribe', 'word'],
|
| 153 |
["arabic_english_audios/audios/english_audio_26.mp3", 'English', 'transcribe', 'word'],
|
| 154 |
-
|
| 155 |
["arabic_english_audios/audios/english_audio_28.mp3", 'English', 'transcribe', 'word'],
|
| 156 |
-
|
| 157 |
["arabic_english_audios/audios/english_audio_30.mp3", 'English', 'transcribe', 'word'],
|
| 158 |
["arabic_english_audios/audios/english_audio_31.mp3", 'English', 'transcribe', 'word'],
|
| 159 |
["arabic_english_audios/audios/english_audio_32.mp3", 'English', 'transcribe', 'word'],
|
|
@@ -175,27 +262,51 @@ examples = [
|
|
| 175 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 176 |
gr.HTML("<h2 style='text-align: center;'>Transcribing Audio with Timestamps using whisper-large-v3</h2>")
|
| 177 |
# gr.Markdown("")
|
| 178 |
-
with gr.
|
| 179 |
-
with gr.
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
|
|
|
|
|
|
|
|
|
| 3 |
from pydub import AudioSegment
|
| 4 |
from pydub.generators import Sine
|
| 5 |
import io
|
| 6 |
+
import ffmpeg
|
| 7 |
+
import subprocess
|
| 8 |
+
import torch
|
| 9 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip
|
| 10 |
+
import tempfile
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import re
|
| 14 |
+
import scipy.io.wavfile
|
| 15 |
|
| 16 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
model_id = "openai/whisper-tiny"
|
| 18 |
|
| 19 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 20 |
model_id, low_cpu_mem_usage=True, use_safetensors=True
|
| 21 |
)
|
| 22 |
+
model.to(device)
|
| 23 |
|
| 24 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 25 |
|
|
|
|
| 39 |
english_bad_Words = pd.read_csv("english_bad_words_dataset.csv")
|
| 40 |
|
| 41 |
|
| 42 |
+
def load_audio(file: str, sr: int = 16000):
|
| 43 |
+
try:
|
| 44 |
+
# This reads the audio from the video file without creating a separate audio file
|
| 45 |
+
command = [
|
| 46 |
+
"ffmpeg",
|
| 47 |
+
"-i", file,
|
| 48 |
+
"-f", "s16le",
|
| 49 |
+
"-acodec", "pcm_s16le",
|
| 50 |
+
"-ar", str(sr),
|
| 51 |
+
"-ac", "1",
|
| 52 |
+
"-"
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
out = subprocess.run(command, capture_output=True, check=True).stdout
|
| 56 |
+
except subprocess.CalledProcessError as e:
|
| 57 |
+
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
| 58 |
+
|
| 59 |
+
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
| 60 |
+
|
| 61 |
def clean_english_word(word):
|
| 62 |
cleaned_text = re.sub(r'^[\s\W_]+|[\s\W_]+$', '', word)
|
| 63 |
return cleaned_text.lower()
|
|
|
|
| 119 |
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
|
| 120 |
return formatted_list
|
| 121 |
|
| 122 |
+
def transcribe_audio(input_audio, audio_language, task, timestamp_type):
|
| 123 |
if input_audio is None:
|
| 124 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 125 |
|
|
|
|
| 153 |
|
| 154 |
return [text, timestamps, foul_words, (sample_rate, audio_data)]
|
| 155 |
|
| 156 |
+
|
| 157 |
+
def transcribe_video(input_video, video_language, task, timestamp_type):
|
| 158 |
+
# Load the video file
|
| 159 |
+
video = VideoFileClip(input_video)
|
| 160 |
+
|
| 161 |
+
# Extract the audio
|
| 162 |
+
audio = video.audio
|
| 163 |
+
|
| 164 |
+
# Create a temporary file to save the audio
|
| 165 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
|
| 166 |
+
audio.write_audiofile(temp_audio_file.name, codec='pcm_s16le')
|
| 167 |
+
|
| 168 |
+
# Load the audio file into an AudioSegment
|
| 169 |
+
audio_segment = AudioSegment.from_file(temp_audio_file.name, format="wav")
|
| 170 |
+
|
| 171 |
+
# Ensure the audio is mono
|
| 172 |
+
if audio_segment.channels > 1:
|
| 173 |
+
audio_segment = audio_segment.set_channels(1)
|
| 174 |
+
|
| 175 |
+
# Save the mono audio to a temporary file
|
| 176 |
+
mono_temp_audio_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
| 177 |
+
audio_segment.export(mono_temp_audio_file.name, format="wav")
|
| 178 |
+
|
| 179 |
+
# Save the mono audio to a file
|
| 180 |
+
extracted_audio_path = "extracted_audio_mono.mp3"
|
| 181 |
+
audio_segment.export(extracted_audio_path, format="mp3")
|
| 182 |
+
|
| 183 |
+
# Load the audio as a numpy array
|
| 184 |
+
# sample_rate, audio_array = scipy.io.wavfile.read(mono_temp_audio_file.name)
|
| 185 |
+
|
| 186 |
+
output = pipe(extracted_audio_path, return_timestamps=timestamp_type, generate_kwargs={"task": task})
|
| 187 |
+
text = output['text']
|
| 188 |
+
|
| 189 |
+
timestamps = format_output_to_list(output['chunks'])
|
| 190 |
+
|
| 191 |
+
foul_words, negative_timestamps = classifier(output['chunks'], video_language)
|
| 192 |
+
foul_words = ", ".join(foul_words)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
audio_output = mute_audio_range(extracted_audio_path, negative_timestamps)
|
| 196 |
+
|
| 197 |
+
# Resample the output audio to 16kHz
|
| 198 |
+
audio_output = resample_audio(audio_output, 16000)
|
| 199 |
+
|
| 200 |
+
# Save the output audio to a BytesIO object
|
| 201 |
+
output_buffer = io.BytesIO()
|
| 202 |
+
audio_output.export(output_buffer, format="wav")
|
| 203 |
+
output_buffer.seek(0)
|
| 204 |
+
|
| 205 |
+
# Read the audio data from the BytesIO buffer
|
| 206 |
+
sample_rate = audio_output.frame_rate
|
| 207 |
+
audio_data = np.frombuffer(output_buffer.read(), dtype=np.int16)
|
| 208 |
+
|
| 209 |
+
# Save the processed NumPy array to a WAV file
|
| 210 |
+
processed_audio_path = "processed_audio.wav"
|
| 211 |
+
scipy.io.wavfile.write(processed_audio_path, sample_rate, audio_data)
|
| 212 |
+
|
| 213 |
+
# Load the processed audio into a moviepy AudioFileClip
|
| 214 |
+
processed_audio = AudioFileClip(processed_audio_path)
|
| 215 |
+
|
| 216 |
+
# Set the audio of the video to the processed audio
|
| 217 |
+
final_video = video.set_audio(processed_audio)
|
| 218 |
+
|
| 219 |
+
# Save the final video with the combined audio
|
| 220 |
+
final_video_path = "final_video_with_processed_audio.mp4"
|
| 221 |
+
final_video.write_videofile(final_video_path, codec="libx264", audio_codec="aac")
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
return [text, timestamps, foul_words, final_video_path]
|
| 225 |
+
|
| 226 |
+
|
| 227 |
examples = [
|
| 228 |
["arabic_english_audios/audios/arabic_audio_11.mp3", 'Arabic', 'transcribe', 'word'],
|
| 229 |
["arabic_english_audios/audios/arabic_audio_12.mp3", 'Arabic', 'transcribe', 'word'],
|
| 230 |
["arabic_english_audios/audios/arabic_audio_13.mp3", 'Arabic', 'transcribe', 'word'],
|
| 231 |
|
| 232 |
+
["arabic_english_audios/audios/english_audio_18.mp3", 'English', 'transcribe', 'word'],
|
| 233 |
["arabic_english_audios/audios/english_audio_19.mp3", 'English', 'transcribe', 'word'],
|
| 234 |
+
["arabic_english_audios/audios/english_audio_20.mp3", 'English', 'transcribe', 'word'],
|
| 235 |
+
["arabic_english_audios/audios/english_audio_21.mp3", 'English', 'transcribe', 'word'],
|
| 236 |
+
["arabic_english_audios/audios/english_audio_22.mp3", 'English', 'transcribe', 'word'],
|
| 237 |
["arabic_english_audios/audios/english_audio_23.mp3", 'English', 'transcribe', 'word'],
|
| 238 |
["arabic_english_audios/audios/english_audio_24.mp3", 'English', 'transcribe', 'word'],
|
| 239 |
["arabic_english_audios/audios/english_audio_25.mp3", 'English', 'transcribe', 'word'],
|
| 240 |
["arabic_english_audios/audios/english_audio_26.mp3", 'English', 'transcribe', 'word'],
|
| 241 |
+
["arabic_english_audios/audios/english_audio_27.mp3", 'English', 'transcribe', 'word'],
|
| 242 |
["arabic_english_audios/audios/english_audio_28.mp3", 'English', 'transcribe', 'word'],
|
| 243 |
+
["arabic_english_audios/audios/english_audio_29.mp3", 'English', 'transcribe', 'word'],
|
| 244 |
["arabic_english_audios/audios/english_audio_30.mp3", 'English', 'transcribe', 'word'],
|
| 245 |
["arabic_english_audios/audios/english_audio_31.mp3", 'English', 'transcribe', 'word'],
|
| 246 |
["arabic_english_audios/audios/english_audio_32.mp3", 'English', 'transcribe', 'word'],
|
|
|
|
| 262 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 263 |
gr.HTML("<h2 style='text-align: center;'>Transcribing Audio with Timestamps using whisper-large-v3</h2>")
|
| 264 |
# gr.Markdown("")
|
| 265 |
+
with gr.Tab("Audio"):
|
| 266 |
+
with gr.Row():
|
| 267 |
+
with gr.Column():
|
| 268 |
+
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
|
| 269 |
+
audio_language = gr.Radio(["Arabic", "English"], label="Audio Language")
|
| 270 |
+
audio_task = gr.Radio(["transcribe", "translate"], label="Task")
|
| 271 |
+
audio_timestamp_type = gr.Radio(["sentence", "word"], label="Timestamp Type")
|
| 272 |
+
with gr.Row():
|
| 273 |
+
audio_clear_button = gr.ClearButton(value="Clear")
|
| 274 |
+
audio_submit_button = gr.Button("Submit", variant="primary", )
|
| 275 |
+
|
| 276 |
+
with gr.Column():
|
| 277 |
+
audio_transcript_output = gr.Text(label="Transcript")
|
| 278 |
+
audio_timestamp_output = gr.Text(label="Timestamps")
|
| 279 |
+
audio_foul_words = gr.Text(label="Foul Words")
|
| 280 |
+
output_audio = gr.Audio(label="Output Audio", type="numpy")
|
| 281 |
+
|
| 282 |
+
examples = gr.Examples(examples, inputs=[audio_input, audio_language, audio_task, audio_timestamp_type], outputs=[audio_transcript_output, audio_timestamp_output, audio_foul_words, output_audio], fn=transcribe_audio, examples_per_page=50, cache_examples=False)
|
| 283 |
+
|
| 284 |
+
audio_submit_button.click(fn=transcribe_audio, inputs=[audio_input, audio_language, audio_task, audio_timestamp_type], outputs=[audio_transcript_output, audio_timestamp_output, audio_foul_words, output_audio])
|
| 285 |
+
audio_clear_button.add([audio_input, audio_language, audio_task, audio_timestamp_type, audio_transcript_output, audio_timestamp_output, audio_foul_words, output_audio])
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
with gr.Tab("Video"):
|
| 289 |
+
with gr.Row():
|
| 290 |
+
with gr.Column():
|
| 291 |
+
video_input = gr.Video(sources=["upload", 'webcam'], label="Video file")
|
| 292 |
+
video_language = gr.Radio(["Arabic", "English"], label="Video Language")
|
| 293 |
+
video_task = gr.Radio(["transcribe", "translate"], label="Task")
|
| 294 |
+
video_timestamp_type = gr.Radio(["sentence", "word"], label="Timestamp Type")
|
| 295 |
+
with gr.Row():
|
| 296 |
+
video_clear_button = gr.ClearButton(value="Clear")
|
| 297 |
+
video_submit_button = gr.Button("Submit", variant="primary", )
|
| 298 |
+
|
| 299 |
+
with gr.Column():
|
| 300 |
+
video_transcript_output = gr.Text(label="Transcript")
|
| 301 |
+
video_timestamp_output = gr.Text(label="Timestamps")
|
| 302 |
+
video_foul_words = gr.Text(label="Foul Words")
|
| 303 |
+
output_video = gr.Video(label="Output Video")
|
| 304 |
+
# output_video = gr.Audio(label="Output Audio", type="numpy")
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
video_submit_button.click(fn=transcribe_video, inputs=[video_input, video_language, video_task, video_timestamp_type], outputs=[video_transcript_output, video_timestamp_output, video_foul_words, output_video])
|
| 308 |
+
video_clear_button.add([video_input, video_language, video_task, video_timestamp_type, video_transcript_output, video_timestamp_output, video_foul_words, output_video])
|
| 309 |
+
|
| 310 |
|
| 311 |
|
| 312 |
if __name__ == "__main__":
|