Spaces:
Runtime error
Runtime error
| # Step 2 - Importing Libraries | |
| from moviepy.editor import * | |
| from PIL import Image | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,pipeline | |
| import gradio as gr | |
| import torch, torch.backends.cudnn, torch.backends.cuda | |
| from min_dalle import MinDalle | |
| from huggingface_hub import snapshot_download | |
| from PIL import Image, ImageDraw, ImageFont | |
| import textwrap | |
| from mutagen.mp3 import MP3 | |
| from gtts import gTTS | |
| from pydub import AudioSegment | |
| from os import getcwd | |
| import glob | |
| import nltk | |
| import subprocess | |
| nltk.download('punkt') | |
| description = " Video Story Generator with Audio \n PS: Generation of video by using Artifical Intellingence by dalle-mini and distilbart and gtss " | |
| title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss " | |
| tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6") | |
| model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6") | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| print(device) | |
| #def log_gpu_memory(): | |
| # print(subprocess.check_output('nvidia-smi').decode('utf-8')) | |
| #log_gpu_memory() | |
| def get_output_video(text): | |
| inputs = tokenizer(text, | |
| max_length=1024, | |
| truncation=True, | |
| return_tensors="pt") | |
| summary_ids = model.generate(inputs["input_ids"]) | |
| summary = tokenizer.batch_decode(summary_ids, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=False) | |
| plot = list(summary[0].split('.')) | |
| ''' | |
| The required models will be downloaded to models_root if they are not already there. | |
| Set the dtype to torch.float16 to save GPU memory. | |
| If you have an Ampere architecture GPU you can use torch.bfloat16. | |
| Set the device to either "cuda" or "cpu". Once everything has finished initializing, | |
| float32 is faster than float16 but uses more GPU memory. | |
| ''' | |
| def generate_image( | |
| is_mega: bool, | |
| text: str, | |
| seed: int, | |
| grid_size: int, | |
| top_k: int, | |
| image_path: str, | |
| models_root: str, | |
| fp16: bool,): | |
| model = MinDalle( | |
| is_mega=is_mega, | |
| models_root=models_root, | |
| is_reusable=True, | |
| is_verbose=True, | |
| dtype=torch.float16 if fp16 else torch.float32, #param ["float32", "float16", "bfloat16"] | |
| #device='cuda' #'cpu' | |
| ) | |
| #log_gpu_memory() | |
| image = model.generate_image( | |
| text, | |
| seed, | |
| grid_size, | |
| top_k=top_k, | |
| is_verbose=True | |
| ) | |
| return image | |
| generated_images = [] | |
| for senten in plot[:-1]: | |
| image=generate_image( | |
| is_mega= True, | |
| text=senten, | |
| seed=1, | |
| grid_size=1, #param {type:"integer"} | |
| top_k=256, #param {type:"integer"} | |
| image_path='generated', | |
| models_root='pretrained', | |
| fp16=256,) | |
| generated_images.append(image) | |
| # Step 4- Creation of the subtitles | |
| sentences =plot[:-1] | |
| num_sentences=len(sentences) | |
| assert len(generated_images) == len(sentences) , print('Something is wrong') | |
| #We can generate our list of subtitles | |
| from nltk import tokenize | |
| c = 0 | |
| sub_names = [] | |
| for k in range(len(generated_images)): | |
| subtitles=tokenize.sent_tokenize(sentences[k]) | |
| sub_names.append(subtitles) | |
| # Step 5- Adding Subtitles to the Images | |
| def draw_multiple_line_text(image, text, font, text_color, text_start_height): | |
| draw = ImageDraw.Draw(image) | |
| image_width, image_height = image.size | |
| y_text = text_start_height | |
| lines = textwrap.wrap(text, width=40) | |
| for line in lines: | |
| line_width, line_height = font.getsize(line) | |
| draw.text(((image_width - line_width) / 2, y_text), | |
| line, font=font, fill=text_color) | |
| y_text += line_height | |
| def add_text_to_img(text1,image_input): | |
| ''' | |
| Testing draw_multiple_line_text | |
| ''' | |
| image =image_input | |
| fontsize = 13 # starting font size | |
| path_font="/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf" | |
| font = ImageFont.truetype(path_font, fontsize) | |
| text_color = (255,255,0) | |
| text_start_height = 200 | |
| draw_multiple_line_text(image, text1, font, text_color, text_start_height) | |
| return image | |
| generated_images_sub = [] | |
| for k in range(len(generated_images)): | |
| imagenes = generated_images[k].copy() | |
| text_to_add=sub_names[k][0] | |
| result=add_text_to_img(text_to_add,imagenes) | |
| generated_images_sub.append(result) | |
| # Step 7 - Creation of audio | |
| c = 0 | |
| mp3_names = [] | |
| mp3_lengths = [] | |
| for k in range(len(generated_images)): | |
| text_to_add=sub_names[k][0] | |
| print(text_to_add) | |
| f_name = 'audio_'+str(c)+'.mp3' | |
| mp3_names.append(f_name) | |
| # The text that you want to convert to audio | |
| mytext = text_to_add | |
| # Language in which you want to convert | |
| language = 'en' | |
| # Passing the text and language to the engine, | |
| # here we have marked slow=False. Which tells | |
| # the module that the converted audio should | |
| # have a high speed | |
| myobj = gTTS(text=mytext, lang=language, slow=False) | |
| # Saving the converted audio in a mp3 file named | |
| sound_file=f_name | |
| myobj.save(sound_file) | |
| audio = MP3(sound_file) | |
| duration=audio.info.length | |
| mp3_lengths.append(duration) | |
| print(audio.info.length) | |
| c+=1 | |
| # Step 8 - Merge audio files | |
| cwd = (getcwd()).replace(chr(92), '/') | |
| #export_path = f'{cwd}/result.mp3' | |
| export_path ='result.mp3' | |
| MP3_FILES = glob.glob(pathname=f'{cwd}/*.mp3', recursive=True) | |
| silence = AudioSegment.silent(duration=500) | |
| full_audio = AudioSegment.empty() # this will accumulate the entire mp3 audios | |
| for n, mp3_file in enumerate(mp3_names): | |
| mp3_file = mp3_file.replace(chr(92), '/') | |
| print(n, mp3_file) | |
| # Load the current mp3 into `audio_segment` | |
| audio_segment = AudioSegment.from_mp3(mp3_file) | |
| # Just accumulate the new `audio_segment` + `silence` | |
| full_audio += audio_segment + silence | |
| print('Merging ', n) | |
| # The loop will exit once all files in the list have been used | |
| # Then export | |
| full_audio.export(export_path, format='mp3') | |
| print('\ndone!') | |
| # Step 9 - Creation of the video with adjusted times of the sound | |
| c = 0 | |
| file_names = [] | |
| for img in generated_images_sub: | |
| f_name = 'img_'+str(c)+'.jpg' | |
| file_names.append(f_name) | |
| img = img.save(f_name) | |
| c+=1 | |
| print(file_names) | |
| clips=[] | |
| d=0 | |
| for m in file_names: | |
| duration=mp3_lengths[d] | |
| print(d,duration) | |
| clips.append(ImageClip(m).set_duration(duration+0.5)) | |
| d+=1 | |
| concat_clip = concatenate_videoclips(clips, method="compose") | |
| concat_clip.write_videofile("result_new.mp4", fps=24) | |
| # Step 10 - Merge Video + Audio | |
| movie_name = 'result_new.mp4' | |
| export_path='result.mp3' | |
| movie_final= 'result_final.mp4' | |
| def combine_audio(vidname, audname, outname, fps=60): | |
| import moviepy.editor as mpe | |
| my_clip = mpe.VideoFileClip(vidname) | |
| audio_background = mpe.AudioFileClip(audname) | |
| final_clip = my_clip.set_audio(audio_background) | |
| final_clip.write_videofile(outname,fps=fps) | |
| combine_audio(movie_name, export_path, movie_final) # create a new file | |
| return 'result_final.mp4' | |
| text ='Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.' | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown("# Video Generator from stories with Artificial Intelligence") | |
| gr.Markdown("A story can be input by user. The story is summarized using DistillBART model. Then, then it is generated the images by using Dalle-mini and created the subtitles and audio gtts. These are generated as a video.") | |
| with gr.Row(): | |
| # Left column (inputs) | |
| with gr.Column(): | |
| input_start_text = gr.Textbox(value=text, label="Type your story here, for now a sample story is added already!") | |
| with gr.Row(): | |
| button_gen_video = gr.Button("Generate Video") | |
| # Right column (outputs) | |
| with gr.Column(): | |
| output_interpolation = gr.Video(label="Generated Video") | |
| gr.Markdown("<h3>Future Works </h3>") | |
| gr.Markdown("This program text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use Dalle-2 For more info visit [ruslanmv.com](https://ruslanmv.com/) ") | |
| button_gen_video.click(fn=get_output_video, inputs=input_start_text, outputs=output_interpolation) | |
| demo.launch(debug=False) |