Spaces:
Runtime error
Runtime error
load db_all before inference
Browse files- Home.py +13 -2
- src/vectordatabase.py +59 -9
Home.py
CHANGED
|
@@ -58,8 +58,9 @@ with gr.Blocks() as App:
|
|
| 58 |
with gr.Row() as additional_input:
|
| 59 |
n_slider = gr.Slider(label="Number of Results", minimum=1, maximum=100, step=1, value=10)
|
| 60 |
party_dopdown = gr.Dropdown(value='All', choices=['All','CDU/CSU','SPD','FDP','Grüne','not found','DIE LINKE.','PDS','KPD'], label='Party') # change choices to all possible options
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
|
| 64 |
search_btn = gr.Button('Search')
|
| 65 |
|
|
@@ -106,6 +107,16 @@ with gr.Blocks() as App:
|
|
| 106 |
inputs=[results_df, keyword_box, ftype_dropdown],
|
| 107 |
outputs=[file],
|
| 108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
|
| 111 |
if __name__ == "__main__":
|
|
|
|
| 58 |
with gr.Row() as additional_input:
|
| 59 |
n_slider = gr.Slider(label="Number of Results", minimum=1, maximum=100, step=1, value=10)
|
| 60 |
party_dopdown = gr.Dropdown(value='All', choices=['All','CDU/CSU','SPD','FDP','Grüne','not found','DIE LINKE.','PDS','KPD'], label='Party') # change choices to all possible options
|
| 61 |
+
# ToDo: Add date or legislature filter as input
|
| 62 |
+
#start_date = Calendar(value="1949-01-01", type="datetime", label="Select start date", info="Click the calendar icon to bring up the calendar.", interactive=True)
|
| 63 |
+
#end_date = Calendar(value=datetime.today().strftime('%Y-%m-%d'), type="datetime", label="Select end date", info="Click the calendar icon to bring up the calendar.", interactive=True)
|
| 64 |
|
| 65 |
search_btn = gr.Button('Search')
|
| 66 |
|
|
|
|
| 107 |
inputs=[results_df, keyword_box, ftype_dropdown],
|
| 108 |
outputs=[file],
|
| 109 |
)
|
| 110 |
+
|
| 111 |
+
with gr.Tab("About"):
|
| 112 |
+
gr.Markdown(text="""**Motivation:**
|
| 113 |
+
The idea of this project is a combination of my curiosity in LLM application and my affection for speech data, that I developed during my bachelor thesis on measuring populism in text data.
|
| 114 |
+
I would like to allow people to discover interesting discussions, opinions and positions that were communicated in the german parliament thoughout the years.
|
| 115 |
+
**Development status:**
|
| 116 |
+
Chatbot: Users can interact with the chatbot asking questions about anything that can be answered by speeches. Furthermore they can select any legislature as a basis for the chatbot's reply.
|
| 117 |
+
Keyword
|
| 118 |
+
|
| 119 |
+
""")
|
| 120 |
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
src/vectordatabase.py
CHANGED
|
@@ -18,19 +18,42 @@ import os
|
|
| 18 |
# from dotenv import load_dotenv
|
| 19 |
# load_dotenv()
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
# Load documents to create a vectorstore later
|
| 23 |
def load_documents(df):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
data = loader.load()
|
|
|
|
|
|
|
| 27 |
splitter = RecursiveCharacterTextSplitter(
|
| 28 |
chunk_size=1024,
|
| 29 |
chunk_overlap=32,
|
| 30 |
length_function=len,
|
| 31 |
is_separator_regex=False,
|
| 32 |
)
|
|
|
|
|
|
|
| 33 |
documents = splitter.split_documents(documents=data)
|
|
|
|
| 34 |
return documents
|
| 35 |
|
| 36 |
|
|
@@ -69,10 +92,10 @@ def get_vectorstore(inputs, embeddings):
|
|
| 69 |
folder_path = "./src/FAISS"
|
| 70 |
|
| 71 |
if inputs[0] == "All":
|
| 72 |
-
index_name = "speeches_1949_09_12"
|
| 73 |
-
db = FAISS.load_local(folder_path=folder_path, index_name=index_name,
|
| 74 |
-
|
| 75 |
-
return
|
| 76 |
|
| 77 |
|
| 78 |
# Initialize empty db
|
|
@@ -99,15 +122,42 @@ def get_vectorstore(inputs, embeddings):
|
|
| 99 |
|
| 100 |
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
document_chain = create_stuff_documents_chain(llm=llm, prompt=prompt)
|
|
|
|
| 105 |
retriever = db.as_retriever()
|
|
|
|
| 106 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
| 107 |
-
|
| 108 |
response = retrieval_chain.invoke({"input": question})
|
|
|
|
| 109 |
return response
|
| 110 |
|
|
|
|
| 111 |
#########
|
| 112 |
# Dynamically loading vector_db
|
| 113 |
##########
|
|
|
|
| 18 |
# from dotenv import load_dotenv
|
| 19 |
# load_dotenv()
|
| 20 |
|
| 21 |
+
# Global variables
|
| 22 |
+
embeddings = HuggingFaceEmbeddings(model_name="paraphrase-multilingual-MiniLM-L12-v2")
|
| 23 |
+
db_all = FAISS.load_local(folder_path="./src/FAISS", index_name="speeches_1949_09_12",
|
| 24 |
+
embeddings=embeddings, allow_dangerous_deserialization=True)
|
| 25 |
|
|
|
|
| 26 |
def load_documents(df):
|
| 27 |
+
"""
|
| 28 |
+
Load documents from a DataFrame and split them into smaller chunks for vector storage.
|
| 29 |
+
|
| 30 |
+
Parameters:
|
| 31 |
+
----------
|
| 32 |
+
df : pandas.DataFrame
|
| 33 |
+
A DataFrame containing the documents to be processed, with a column named 'speech_content' that holds the text content.
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
-------
|
| 37 |
+
list
|
| 38 |
+
A list of split document chunks ready for further processing or vectorization.
|
| 39 |
+
"""
|
| 40 |
|
| 41 |
+
# Initialize a DataFrameLoader with the given DataFrame and specify the column containing the content to load
|
| 42 |
+
loader = DataFrameLoader(data_frame=df, page_content_column='speech_content')
|
| 43 |
+
# Load the data from the DataFrame into a suitable format for processing
|
| 44 |
data = loader.load()
|
| 45 |
+
|
| 46 |
+
# Initialize a RecursiveCharacterTextSplitter to split the text into chunks
|
| 47 |
splitter = RecursiveCharacterTextSplitter(
|
| 48 |
chunk_size=1024,
|
| 49 |
chunk_overlap=32,
|
| 50 |
length_function=len,
|
| 51 |
is_separator_regex=False,
|
| 52 |
)
|
| 53 |
+
|
| 54 |
+
# Split the loaded data into smaller chunks using the splitter
|
| 55 |
documents = splitter.split_documents(documents=data)
|
| 56 |
+
|
| 57 |
return documents
|
| 58 |
|
| 59 |
|
|
|
|
| 92 |
folder_path = "./src/FAISS"
|
| 93 |
|
| 94 |
if inputs[0] == "All":
|
| 95 |
+
# index_name = "speeches_1949_09_12"
|
| 96 |
+
# db = FAISS.load_local(folder_path=folder_path, index_name=index_name,
|
| 97 |
+
# embeddings=embeddings, allow_dangerous_deserialization=True)
|
| 98 |
+
return db_all
|
| 99 |
|
| 100 |
|
| 101 |
# Initialize empty db
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
|
| 125 |
+
def RAG(llm, prompt, db, question):
|
| 126 |
+
"""
|
| 127 |
+
Apply Retrieval-Augmented Generation (RAG) by providing the context and the question to the
|
| 128 |
+
language model using a predefined template.
|
| 129 |
+
|
| 130 |
+
Parameters:
|
| 131 |
+
----------
|
| 132 |
+
llm : LanguageModel
|
| 133 |
+
An instance of the language model to be used for generating responses.
|
| 134 |
+
|
| 135 |
+
prompt : str
|
| 136 |
+
A predefined template or prompt that structures how the context and question are presented to the language model.
|
| 137 |
+
|
| 138 |
+
db : VectorStore
|
| 139 |
+
A vector store instance that supports retrieval of relevant documents based on the input question.
|
| 140 |
+
|
| 141 |
+
question : str
|
| 142 |
+
The question or query to be answered by the language model.
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
-------
|
| 146 |
+
str
|
| 147 |
+
The response generated by the language model, based on the retrieved context and provided question.
|
| 148 |
+
"""
|
| 149 |
+
# Create a document chain using the provided language model and prompt template
|
| 150 |
document_chain = create_stuff_documents_chain(llm=llm, prompt=prompt)
|
| 151 |
+
# Convert the vector store into a retriever
|
| 152 |
retriever = db.as_retriever()
|
| 153 |
+
# Create a retrieval chain that integrates the retriever with the document chain
|
| 154 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
| 155 |
+
# Invoke the retrieval chain with the input question to get the final response
|
| 156 |
response = retrieval_chain.invoke({"input": question})
|
| 157 |
+
|
| 158 |
return response
|
| 159 |
|
| 160 |
+
|
| 161 |
#########
|
| 162 |
# Dynamically loading vector_db
|
| 163 |
##########
|