File size: 16,791 Bytes
26e0cd3 6f66838 214cc33 6f66838 214cc33 6f66838 214cc33 6f66838 214cc33 6f66838 214cc33 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 6f66838 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 ac11f96 26e0cd3 d368c09 26e0cd3 ac11f96 26e0cd3 ac11f96 d368c09 ac11f96 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 d368c09 26e0cd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import gradio as gr
import torch
import os
import time
import copy
from pathlib import Path
from typing import Optional, Tuple
import spaces
from vibevoice.modular.modeling_vibevoice_streaming_inference import (
VibeVoiceStreamingForConditionalGenerationInference,
)
from vibevoice.processor.vibevoice_streaming_processor import (
VibeVoiceStreamingProcessor,
)
class VoiceMapper:
"""Maps speaker names to voice file paths"""
def __init__(self):
self.setup_voice_presets()
# Change name according to our preset voice file
new_dict = {}
for name, path in self.voice_presets.items():
if "_" in name:
name = name.split("_")[0]
if "-" in name:
name = name.split("-")[-1]
new_dict[name] = path
self.voice_presets.update(new_dict)
def setup_voice_presets(self):
"""Setup voice presets by scanning the voices directory."""
voices_dir = os.path.join(os.path.dirname(__file__), "demo/voices/streaming_model")
# Check if voices directory exists
if not os.path.exists(voices_dir):
print(f"Warning: Voices directory not found at {voices_dir}")
self.voice_presets = {}
self.available_voices = {}
return
# Scan for all VOICE files in the voices directory
self.voice_presets = {}
# Get all .pt files in the voices directory
pt_files = [
f
for f in os.listdir(voices_dir)
if f.lower().endswith(".pt") and os.path.isfile(os.path.join(voices_dir, f))
]
# Create dictionary with filename (without extension) as key
for pt_file in pt_files:
# Remove .pt extension to get the name
name = os.path.splitext(pt_file)[0]
# Create full path
full_path = os.path.join(voices_dir, pt_file)
self.voice_presets[name] = full_path
# Sort the voice presets alphabetically by name for better UI
self.voice_presets = dict(sorted(self.voice_presets.items()))
# Filter out voices that don't exist (this is now redundant but kept for safety)
self.available_voices = {
name: path for name, path in self.voice_presets.items() if os.path.exists(path)
}
print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
print(f"Available voices: {', '.join(self.available_voices.keys())}")
def get_voice_path(self, speaker_name: str) -> str:
"""Get voice file path for a given speaker name"""
# First try exact match
if speaker_name in self.voice_presets:
return self.voice_presets[speaker_name]
# Try partial matching (case insensitive)
speaker_lower = speaker_name.lower()
for preset_name, path in self.voice_presets.items():
if preset_name.lower() in speaker_lower or speaker_lower in preset_name.lower():
return path
# Default to first voice if no match found
default_voice = list(self.voice_presets.values())[0]
print(
f"Warning: No voice preset found for '{speaker_name}', using default voice: {default_voice}"
)
return default_voice
# Patch the _update_model_kwargs_for_generation method
def patched_update_model_kwargs_for_generation(
self,
outputs,
model_kwargs,
is_encoder_decoder=False,
model_inputs=None,
num_new_tokens=1,
):
"""Patched version that handles both dict and object-like outputs"""
# Handle both dict and object-like outputs for cache
cache_name = "past_key_values"
if isinstance(outputs, dict):
# For dict outputs, use .get() method
model_kwargs[cache_name] = outputs.get(cache_name)
else:
# For object outputs, try to get the attribute
model_kwargs[cache_name] = getattr(outputs, cache_name, None)
if getattr(self, "config", None) is not None:
if "token_type_ids" in model_kwargs and model_kwargs["token_type_ids"] is not None:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat(
[token_type_ids, token_type_ids[:, -1:]], dim=-1
)
if not is_encoder_decoder:
# update attention mask
if "attention_mask" in model_kwargs and model_kwargs["attention_mask"] is not None:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))],
dim=-1,
)
else:
# update decoder attention mask
if "decoder_attention_mask" in model_kwargs and model_kwargs["decoder_attention_mask"] is not None:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
model_kwargs["decoder_attention_mask"] = torch.cat(
[
decoder_attention_mask,
decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1)),
],
dim=-1,
)
if model_inputs is not None and "cache_position" in model_inputs:
model_kwargs["cache_position"] = model_inputs["cache_position"][-1:] + num_new_tokens
return model_kwargs
# Check if CUDA is available
CUDA_AVAILABLE = torch.cuda.is_available()
DEVICE = "cuda" if CUDA_AVAILABLE else "cpu"
DTYPE = torch.float16 if CUDA_AVAILABLE else torch.float32
print(f"CUDA available: {CUDA_AVAILABLE}")
print(f"Using device: {DEVICE}")
# Load model and processor directly
print("Loading VibeVoice-Realtime model...")
MODEL_PATH = "microsoft/VibeVoice-Realtime-0.5B"
# Load processor (CPU operation)
PROCESSOR = VibeVoiceStreamingProcessor.from_pretrained(MODEL_PATH)
# Load model - use appropriate dtype based on device
MODEL = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
MODEL_PATH,
torch_dtype=DTYPE,
device_map="cpu", # Always start on CPU for ZeroGPU compatibility
attn_implementation="sdpa",
)
# Apply the patch to the model instance
MODEL._update_model_kwargs_for_generation = patched_update_model_kwargs_for_generation.__get__(MODEL, type(MODEL))
MODEL.eval()
MODEL.set_ddpm_inference_steps(num_steps=5)
# Initialize voice mapper
VOICE_MAPPER = VoiceMapper()
print("Model loaded successfully!")
def move_to_device(obj, device):
"""Recursively move tensors in nested structures to device"""
if torch.is_tensor(obj):
return obj.to(device)
elif isinstance(obj, dict):
return {k: move_to_device(v, device) for k, v in obj.items()}
elif isinstance(obj, list):
return [move_to_device(item, device) for item in obj]
elif isinstance(obj, tuple):
return tuple(move_to_device(item, device) for item in obj)
else:
return obj
@spaces.GPU(duration=60) # Request GPU for 60 seconds
def generate_speech(
text: str,
speaker_name: str,
cfg_scale: float = 1.5,
progress=gr.Progress(),
) -> Tuple[Optional[str], str]:
"""
Generate speech from text using VibeVoice-Realtime with ZeroGPU
Args:
text: Input text to convert to speech
speaker_name: Name of the speaker voice to use
cfg_scale: Classifier-Free Guidance scale (higher = more faithful to text)
progress: Gradio progress tracker
Returns:
Tuple of (audio_path, status_message)
"""
if not text or not text.strip():
return None, "β Error: Please enter some text to convert to speech."
try:
# Detect actual device inside the decorated function
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
progress(0, desc="Loading voice preset...")
# Clean text
full_script = text.strip().replace("'", "'").replace('"', '"').replace('"', '"')
# Get voice sample path
voice_sample = VOICE_MAPPER.get_voice_path(speaker_name)
# Load voice sample to CPU first
all_prefilled_outputs = torch.load(
voice_sample, map_location="cpu", weights_only=False
)
# Move model to the appropriate device
MODEL.to(device)
# Move voice sample tensors to device
all_prefilled_outputs = move_to_device(all_prefilled_outputs, device)
progress(0.2, desc="Preparing inputs...")
# Prepare inputs
inputs = PROCESSOR.process_input_with_cached_prompt(
text=full_script,
cached_prompt=all_prefilled_outputs,
padding=True,
return_tensors="pt",
return_attention_mask=True,
)
# Move input tensors to device
inputs = move_to_device(inputs, device)
progress(0.4, desc=f"Generating speech on {device.upper()}...")
# Generate audio
start_time = time.time()
# Use autocast only if on CUDA
if device == "cuda":
with torch.cuda.amp.autocast():
outputs = MODEL.generate(
**inputs,
max_new_tokens=None,
cfg_scale=cfg_scale,
tokenizer=PROCESSOR.tokenizer,
generation_config={"do_sample": False},
verbose=False,
all_prefilled_outputs=copy.deepcopy(all_prefilled_outputs)
if all_prefilled_outputs is not None
else None,
)
else:
outputs = MODEL.generate(
**inputs,
max_new_tokens=None,
cfg_scale=cfg_scale,
tokenizer=PROCESSOR.tokenizer,
generation_config={"do_sample": False},
verbose=False,
all_prefilled_outputs=copy.deepcopy(all_prefilled_outputs)
if all_prefilled_outputs is not None
else None,
)
generation_time = time.time() - start_time
progress(0.8, desc="Saving audio...")
# Calculate metrics
if outputs.speech_outputs and outputs.speech_outputs[0] is not None:
sample_rate = 24000
audio_samples = (
outputs.speech_outputs[0].shape[-1]
if len(outputs.speech_outputs[0].shape) > 0
else len(outputs.speech_outputs[0])
)
audio_duration = audio_samples / sample_rate
rtf = generation_time / audio_duration if audio_duration > 0 else float("inf")
# Save output
output_dir = "./outputs"
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, f"generated_{int(time.time())}.wav")
PROCESSOR.save_audio(
outputs.speech_outputs[0].cpu(), # Move to CPU for saving
output_path=output_path,
)
progress(1.0, desc="Complete!")
# Create status message
device_info = "ZeroGPU (CUDA)" if device == "cuda" else "CPU"
status = f"""β
**Generation Complete!**
π **Metrics:**
- Audio Duration: {audio_duration:.2f}s
- Generation Time: {generation_time:.2f}s
- Real-Time Factor: {rtf:.2f}x
- Speaker: {speaker_name}
- CFG Scale: {cfg_scale}
- Device: {device_info}
"""
# Move model back to CPU to free GPU memory
MODEL.to("cpu")
if device == "cuda":
torch.cuda.empty_cache()
return output_path, status
else:
MODEL.to("cpu")
if device == "cuda":
torch.cuda.empty_cache()
return None, "β Error: No audio output generated."
except Exception as e:
import traceback
error_msg = f"β Error during generation:\n{str(e)}\n\n{traceback.format_exc()}"
print(error_msg)
# Clean up GPU memory on error
try:
MODEL.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
except:
pass
return None, error_msg
# Create Gradio interface
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(
f"""
# ποΈ VibeVoice-Realtime Text-to-Speech
Convert text to natural-sounding speech using Microsoft's VibeVoice-Realtime model.
**π Device:** {"ZeroGPU - Efficient GPU allocation for fast inference!" if CUDA_AVAILABLE else "CPU Mode - GPU will be allocated when generating"}
<div style="text-align: center; margin-top: 10px;">
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="text-decoration: none; color: #4F46E5; font-weight: 600;">
Built with anycoder β¨
</a>
</div>
"""
)
with gr.Row():
with gr.Column(scale=2):
# Input section
text_input = gr.Textbox(
label="Text to Convert",
placeholder="Enter the text you want to convert to speech...",
lines=8,
max_lines=20,
)
with gr.Row():
speaker_dropdown = gr.Dropdown(
choices=list(VOICE_MAPPER.available_voices.keys()),
value=list(VOICE_MAPPER.available_voices.keys())[0]
if VOICE_MAPPER.available_voices
else None,
label="Speaker Voice",
info="Select the voice to use for speech generation",
)
cfg_slider = gr.Slider(
minimum=1.0,
maximum=3.0,
value=1.5,
step=0.1,
label="CFG Scale",
info="Higher values = more faithful to text (1.0-3.0)",
)
generate_btn = gr.Button("π΅ Generate Speech", variant="primary", size="lg")
with gr.Column(scale=1):
# Output section
audio_output = gr.Audio(
label="Generated Speech",
type="filepath",
interactive=False,
)
status_output = gr.Markdown(
"""
**Status:** Ready to generate speech
Enter text and click "Generate Speech" to start.
β‘ GPU will be allocated dynamically for generation
"""
)
# Example inputs
gr.Examples(
examples=[
[
"VibeVoice is a novel framework designed for generating expressive, long-form, multi-speaker conversational audio.",
list(VOICE_MAPPER.available_voices.keys())[0]
if VOICE_MAPPER.available_voices
else "Wayne",
1.5,
],
[
"The quick brown fox jumps over the lazy dog. This is a test of the text-to-speech system.",
list(VOICE_MAPPER.available_voices.keys())[0]
if VOICE_MAPPER.available_voices
else "Wayne",
1.5,
],
],
inputs=[text_input, speaker_dropdown, cfg_slider],
label="Example Inputs",
)
# Event handlers
generate_btn.click(
fn=generate_speech,
inputs=[text_input, speaker_dropdown, cfg_slider],
outputs=[audio_output, status_output],
api_name="generate",
)
# Footer
gr.Markdown(
"""
---
### π Notes:
- **Model**: Microsoft VibeVoice-Realtime-0.5B
- **Sample Rate**: 24kHz
- **Context Length**: 8K tokens
- **Generation Length**: ~10 minutes
- **Infrastructure**: ZeroGPU (Hugging Face Spaces)
### β οΈ Important:
- The model is designed for English text only
- Very short inputs (< 3 words) may produce unstable results
- Code, formulas, and special symbols are not supported
- Please use responsibly and disclose AI-generated content
- GPU is allocated dynamically - generation may take a few seconds to start
"""
)
# Launch the app with Gradio 6 syntax
if __name__ == "__main__":
demo.launch(
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate",
),
footer_links=[
{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"}
],
) |