import gradio as gr from transformers import pipeline # Initialize the pipeline pipe = pipeline("text-generation", model="mlabonne/Qwen3-8B-abliterated") def chat(text): try: # Limit input text to prevent excessive processing if len(text) > 1000: text = text[:1000] # Generate response with limited tokens res = pipe(text, max_new_tokens=50) generated_text = res[0]['generated_text'] # Limit response length to control Content-Length max_response_length = 2000 if len(generated_text) > max_response_length: generated_text = generated_text[:max_response_length] + "..." return generated_text except Exception as e: # Return user-friendly error message instead of critical failure return f"Desculpe, ocorreu um erro ao processar sua solicitação. Tente novamente com um texto mais simples." demo = gr.Interface( fn=chat, inputs="text", outputs="text", title="Qwen3-8B Abliterated Chatbot" ) demo.launch()