Update app.py
Browse files
app.py
CHANGED
|
@@ -7,10 +7,32 @@ import warnings
|
|
| 7 |
import torch
|
| 8 |
import logging
|
| 9 |
import io
|
| 10 |
-
import
|
|
|
|
| 11 |
|
| 12 |
warnings.filterwarnings("ignore")
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Global model loader
|
| 16 |
model = None
|
|
@@ -18,11 +40,13 @@ model = None
|
|
| 18 |
def load_model():
|
| 19 |
global model
|
| 20 |
if model is None:
|
|
|
|
| 21 |
model = nemo_asr.models.ASRModel.from_pretrained(
|
| 22 |
model_name="nvidia/parakeet-tdt-0.6b-v3",
|
| 23 |
map_location="cpu"
|
| 24 |
)
|
| 25 |
model.eval()
|
|
|
|
| 26 |
return model
|
| 27 |
|
| 28 |
class TranscriptionState:
|
|
@@ -33,15 +57,21 @@ class TranscriptionState:
|
|
| 33 |
def transcribe_segment(segment_array: np.ndarray):
|
| 34 |
"""Transcribe a normalized audio segment."""
|
| 35 |
load_model()
|
|
|
|
| 36 |
with torch.no_grad(), warnings.catch_warnings():
|
| 37 |
warnings.simplefilter("ignore")
|
| 38 |
output = model.transcribe([segment_array])
|
|
|
|
| 39 |
return output[0]
|
| 40 |
|
| 41 |
def process_live_audio(chunk_bytes, state: TranscriptionState):
|
| 42 |
"""Process live mic PCM bytes chunk with VAD and buffer management."""
|
| 43 |
if chunk_bytes is None or len(chunk_bytes) == 0:
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Create AudioSegment from raw PCM bytes (16kHz mono int16)
|
| 47 |
try:
|
|
@@ -52,22 +82,26 @@ def process_live_audio(chunk_bytes, state: TranscriptionState):
|
|
| 52 |
channels=1
|
| 53 |
)
|
| 54 |
except Exception as e:
|
| 55 |
-
|
| 56 |
-
return state.text, state
|
| 57 |
|
| 58 |
# Append to buffer
|
| 59 |
if state.buffer is None:
|
| 60 |
state.buffer = new_segment
|
|
|
|
| 61 |
else:
|
| 62 |
state.buffer += new_segment
|
| 63 |
|
|
|
|
|
|
|
|
|
|
| 64 |
# Trim buffer to prevent accumulation (keep last 60s)
|
| 65 |
-
if
|
| 66 |
-
|
| 67 |
full_array = np.array(state.buffer.get_array_of_samples(), dtype=np.float32) / 32768.0
|
| 68 |
state.text = transcribe_segment(full_array)
|
| 69 |
-
# Trim to last 30s for ongoing buffer
|
| 70 |
state.buffer = state.buffer[-30000:]
|
|
|
|
| 71 |
|
| 72 |
# VAD: Detect pauses in current buffer
|
| 73 |
silent_windows = detect_silence(
|
|
@@ -79,40 +113,25 @@ def process_live_audio(chunk_bytes, state: TranscriptionState):
|
|
| 79 |
if len(silent_windows) > 0:
|
| 80 |
last_silence_end = silent_windows[-1][1]
|
| 81 |
if last_silence_end < len(state.buffer):
|
| 82 |
-
|
| 83 |
segment = state.buffer[:last_silence_end]
|
| 84 |
segment_array = np.array(segment.get_array_of_samples(), dtype=np.float32) / 32768.0
|
| 85 |
partial_text = transcribe_segment(segment_array)
|
| 86 |
state.text = partial_text
|
| 87 |
-
# Keep remaining as buffer
|
| 88 |
state.buffer = state.buffer[last_silence_end:]
|
|
|
|
| 89 |
|
| 90 |
-
return state.text, state
|
| 91 |
-
|
| 92 |
-
def transcribe_file(audio_path):
|
| 93 |
-
"""Batch transcribe uploaded file path."""
|
| 94 |
-
if audio_path is None or not os.path.exists(audio_path):
|
| 95 |
-
return ""
|
| 96 |
-
try:
|
| 97 |
-
audio_data, sr = librosa.load(audio_path, sr=16000, mono=True)
|
| 98 |
-
if len(audio_data) == 0:
|
| 99 |
-
return ""
|
| 100 |
-
except Exception:
|
| 101 |
-
return "Error loading file."
|
| 102 |
-
load_model()
|
| 103 |
-
with torch.no_grad(), warnings.catch_warnings():
|
| 104 |
-
warnings.simplefilter("ignore")
|
| 105 |
-
output = model.transcribe([audio_data])
|
| 106 |
-
return output[0]
|
| 107 |
|
| 108 |
def clear_session(state: TranscriptionState):
|
| 109 |
"""Reset session."""
|
| 110 |
state.buffer = None
|
| 111 |
state.text = ""
|
| 112 |
-
|
|
|
|
| 113 |
|
| 114 |
-
# Gradio UI
|
| 115 |
-
with gr.Blocks(title="Parakeet v3 Real-Time Transcription") as demo:
|
| 116 |
gr.Markdown(
|
| 117 |
"""
|
| 118 |
# NVIDIA Parakeet-TDT 0.6B v3 Real-Time Transcription
|
|
@@ -120,47 +139,43 @@ with gr.Blocks(title="Parakeet v3 Real-Time Transcription") as demo:
|
|
| 120 |
"""
|
| 121 |
)
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
transcribe_file,
|
| 157 |
-
inputs=file_input,
|
| 158 |
-
outputs=file_output
|
| 159 |
-
)
|
| 160 |
|
| 161 |
gr.Markdown(
|
| 162 |
"""
|
| 163 |
-
**Tips:** Speak clearly with brief pauses for instant updates. Long monologues auto-update every 60s.
|
| 164 |
"""
|
| 165 |
)
|
| 166 |
|
|
|
|
| 7 |
import torch
|
| 8 |
import logging
|
| 9 |
import io
|
| 10 |
+
import os
|
| 11 |
+
import datetime
|
| 12 |
|
| 13 |
warnings.filterwarnings("ignore")
|
| 14 |
+
|
| 15 |
+
# Setup file-based logging for persistence
|
| 16 |
+
LOG_FILE = "/tmp/app_logs.txt"
|
| 17 |
+
logging.basicConfig(
|
| 18 |
+
level=logging.INFO,
|
| 19 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 20 |
+
handlers=[
|
| 21 |
+
logging.FileHandler(LOG_FILE, mode='a'),
|
| 22 |
+
logging.StreamHandler() # Also to console for HF logs
|
| 23 |
+
]
|
| 24 |
+
)
|
| 25 |
+
logger = logging.getLogger(__name__)
|
| 26 |
+
|
| 27 |
+
def append_log(message):
|
| 28 |
+
"""Append log message to file and return updated log content."""
|
| 29 |
+
logger.info(message)
|
| 30 |
+
try:
|
| 31 |
+
with open(LOG_FILE, 'r') as f:
|
| 32 |
+
logs = f.read()
|
| 33 |
+
except FileNotFoundError:
|
| 34 |
+
logs = ""
|
| 35 |
+
return logs
|
| 36 |
|
| 37 |
# Global model loader
|
| 38 |
model = None
|
|
|
|
| 40 |
def load_model():
|
| 41 |
global model
|
| 42 |
if model is None:
|
| 43 |
+
logger.info("Loading Parakeet v3 model...")
|
| 44 |
model = nemo_asr.models.ASRModel.from_pretrained(
|
| 45 |
model_name="nvidia/parakeet-tdt-0.6b-v3",
|
| 46 |
map_location="cpu"
|
| 47 |
)
|
| 48 |
model.eval()
|
| 49 |
+
logger.info("Model loaded successfully.")
|
| 50 |
return model
|
| 51 |
|
| 52 |
class TranscriptionState:
|
|
|
|
| 57 |
def transcribe_segment(segment_array: np.ndarray):
|
| 58 |
"""Transcribe a normalized audio segment."""
|
| 59 |
load_model()
|
| 60 |
+
logger.info(f"Transcribing segment of length {len(segment_array)} samples.")
|
| 61 |
with torch.no_grad(), warnings.catch_warnings():
|
| 62 |
warnings.simplefilter("ignore")
|
| 63 |
output = model.transcribe([segment_array])
|
| 64 |
+
logger.info(f"Transcription complete: '{output[0][:50]}...'")
|
| 65 |
return output[0]
|
| 66 |
|
| 67 |
def process_live_audio(chunk_bytes, state: TranscriptionState):
|
| 68 |
"""Process live mic PCM bytes chunk with VAD and buffer management."""
|
| 69 |
if chunk_bytes is None or len(chunk_bytes) == 0:
|
| 70 |
+
logger.debug("Empty chunk received.")
|
| 71 |
+
return state.text, state, append_log("Empty chunk skipped.")
|
| 72 |
+
|
| 73 |
+
chunk_size = len(chunk_bytes)
|
| 74 |
+
logger.debug(f"Received chunk of {chunk_size} bytes.")
|
| 75 |
|
| 76 |
# Create AudioSegment from raw PCM bytes (16kHz mono int16)
|
| 77 |
try:
|
|
|
|
| 82 |
channels=1
|
| 83 |
)
|
| 84 |
except Exception as e:
|
| 85 |
+
logger.error(f"Chunk creation error: {e}")
|
| 86 |
+
return state.text, state, append_log(f"Chunk error: {e}")
|
| 87 |
|
| 88 |
# Append to buffer
|
| 89 |
if state.buffer is None:
|
| 90 |
state.buffer = new_segment
|
| 91 |
+
logger.debug("Initialized new buffer.")
|
| 92 |
else:
|
| 93 |
state.buffer += new_segment
|
| 94 |
|
| 95 |
+
buffer_dur = state.buffer.duration_seconds
|
| 96 |
+
logger.debug(f"Buffer duration: {buffer_dur:.1f}s")
|
| 97 |
+
|
| 98 |
# Trim buffer to prevent accumulation (keep last 60s)
|
| 99 |
+
if buffer_dur > 60:
|
| 100 |
+
logger.info("Buffer exceeded 60s; trimming and re-transcribing.")
|
| 101 |
full_array = np.array(state.buffer.get_array_of_samples(), dtype=np.float32) / 32768.0
|
| 102 |
state.text = transcribe_segment(full_array)
|
|
|
|
| 103 |
state.buffer = state.buffer[-30000:]
|
| 104 |
+
return state.text, state, append_log("Buffer trimmed at 60s.")
|
| 105 |
|
| 106 |
# VAD: Detect pauses in current buffer
|
| 107 |
silent_windows = detect_silence(
|
|
|
|
| 113 |
if len(silent_windows) > 0:
|
| 114 |
last_silence_end = silent_windows[-1][1]
|
| 115 |
if last_silence_end < len(state.buffer):
|
| 116 |
+
logger.info(f"VAD detected pause at {last_silence_end}ms; transcribing up to pause.")
|
| 117 |
segment = state.buffer[:last_silence_end]
|
| 118 |
segment_array = np.array(segment.get_array_of_samples(), dtype=np.float32) / 32768.0
|
| 119 |
partial_text = transcribe_segment(segment_array)
|
| 120 |
state.text = partial_text
|
|
|
|
| 121 |
state.buffer = state.buffer[last_silence_end:]
|
| 122 |
+
return state.text, state, append_log(f"VAD update: Pause detected, transcribed '{partial_text[:50]}...'")
|
| 123 |
|
| 124 |
+
return state.text, state, append_log(f"Chunk appended; buffer at {buffer_dur:.1f}s, awaiting pause.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
def clear_session(state: TranscriptionState):
|
| 127 |
"""Reset session."""
|
| 128 |
state.buffer = None
|
| 129 |
state.text = ""
|
| 130 |
+
logger.info("Session cleared by user.")
|
| 131 |
+
return "", state, append_log("Session cleared.")
|
| 132 |
|
| 133 |
+
# Gradio UI (mic-only)
|
| 134 |
+
with gr.Blocks(title="Parakeet v3 Real-Time Mic Transcription") as demo:
|
| 135 |
gr.Markdown(
|
| 136 |
"""
|
| 137 |
# NVIDIA Parakeet-TDT 0.6B v3 Real-Time Transcription
|
|
|
|
| 139 |
"""
|
| 140 |
)
|
| 141 |
|
| 142 |
+
state = gr.State(TranscriptionState())
|
| 143 |
+
audio_input = gr.Audio(
|
| 144 |
+
sources=["microphone"],
|
| 145 |
+
type="bytes",
|
| 146 |
+
streaming=True,
|
| 147 |
+
label="Speak now—updates on pauses",
|
| 148 |
+
waveform_options={"show_recording_waveform": True}
|
| 149 |
+
)
|
| 150 |
+
output_text = gr.Textbox(
|
| 151 |
+
label="Live Transcription",
|
| 152 |
+
lines=10,
|
| 153 |
+
interactive=False
|
| 154 |
+
)
|
| 155 |
+
log_text = gr.Textbox(
|
| 156 |
+
label="Debug Logs (Persistent)",
|
| 157 |
+
lines=15,
|
| 158 |
+
interactive=False,
|
| 159 |
+
show_copy_button=True
|
| 160 |
+
)
|
| 161 |
+
clear_btn = gr.Button("Clear Session", variant="secondary")
|
| 162 |
+
|
| 163 |
+
# Stream updates on each chunk
|
| 164 |
+
audio_input.change(
|
| 165 |
+
process_live_audio,
|
| 166 |
+
inputs=[audio_input, state],
|
| 167 |
+
outputs=[output_text, state, log_text],
|
| 168 |
+
show_progress="minimal"
|
| 169 |
+
)
|
| 170 |
+
clear_btn.click(
|
| 171 |
+
clear_session,
|
| 172 |
+
inputs=state,
|
| 173 |
+
outputs=[output_text, state, log_text]
|
| 174 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
gr.Markdown(
|
| 177 |
"""
|
| 178 |
+
**Tips:** Speak clearly with brief pauses for instant updates. Long monologues auto-update every 60s. Logs show real-time debug info.
|
| 179 |
"""
|
| 180 |
)
|
| 181 |
|