Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
# Chat-style RAG app with Streamlit chat UI, FAISS retrieval, SentenceTransformers embeddings,
|
| 3 |
+
# and an open Mistral-7B pipeline. All caches redirected to /tmp to avoid PermissionError.
|
| 4 |
+
|
| 5 |
+
# ---------- Writable dirs BEFORE third-party imports ----------
|
| 6 |
+
import os, glob, tempfile
|
| 7 |
+
# Streamlit internal runtime dir -> /tmp (fixes PermissionError: '/.streamlit')
|
| 8 |
+
ST_RT = os.environ.get("STREAMLIT_RUNTIME_DIR", "/tmp/.streamlit_runtime")
|
| 9 |
+
try:
|
| 10 |
+
os.makedirs(ST_RT, exist_ok=True)
|
| 11 |
+
except Exception:
|
| 12 |
+
ST_RT = tempfile.mkdtemp(prefix="st_runtime_")
|
| 13 |
+
os.environ["STREAMLIT_RUNTIME_DIR"] = ST_RT
|
| 14 |
+
|
| 15 |
+
# Hugging Face caches -> /tmp
|
| 16 |
+
HF_HOME = os.environ.get("HF_HOME", "/tmp/hf_cache")
|
| 17 |
+
try:
|
| 18 |
+
os.makedirs(HF_HOME, exist_ok=True)
|
| 19 |
+
except Exception:
|
| 20 |
+
HF_HOME = tempfile.mkdtemp(prefix="hf_cache_")
|
| 21 |
+
os.environ["HF_HOME"] = HF_HOME
|
| 22 |
+
os.environ["TRANSFORMERS_CACHE"] = HF_HOME # backward-compat; deprecation warning is harmless
|
| 23 |
+
os.environ["SENTENCE_TRANSFORMERS_HOME"] = HF_HOME
|
| 24 |
+
os.environ["HF_DATASETS_CACHE"] = HF_HOME
|
| 25 |
+
os.environ["XDG_CACHE_HOME"] = HF_HOME
|
| 26 |
+
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
| 27 |
+
|
| 28 |
+
# Clean stale locks
|
| 29 |
+
locks_dir = os.path.join(HF_HOME, "hub", ".locks")
|
| 30 |
+
if os.path.isdir(locks_dir):
|
| 31 |
+
for p in glob.glob(os.path.join(locks_dir, "*.lock")):
|
| 32 |
+
try:
|
| 33 |
+
os.remove(p)
|
| 34 |
+
except Exception:
|
| 35 |
+
pass
|
| 36 |
+
|
| 37 |
+
# ---------- Imports AFTER env is set ----------
|
| 38 |
+
import io
|
| 39 |
+
import time
|
| 40 |
+
import pandas as pd
|
| 41 |
+
import numpy as np
|
| 42 |
+
import requests
|
| 43 |
+
import streamlit as st
|
| 44 |
+
from bs4 import BeautifulSoup
|
| 45 |
+
from PyPDF2 import PdfReader
|
| 46 |
+
from docx import Document
|
| 47 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 48 |
+
from sentence_transformers import SentenceTransformer
|
| 49 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 50 |
+
import faiss
|
| 51 |
+
|
| 52 |
+
# ---------- Page ----------
|
| 53 |
+
st.set_page_config(page_title="Chat RAG • Open Model + URLs", layout="wide")
|
| 54 |
+
st.title("💬 Chat RAG with Open Model, FAISS, and Web URLs")
|
| 55 |
+
|
| 56 |
+
# ---------- Session ----------
|
| 57 |
+
for key, default in [
|
| 58 |
+
("messages", []),
|
| 59 |
+
("chunks", []),
|
| 60 |
+
("embedder", None),
|
| 61 |
+
("faiss_index", None),
|
| 62 |
+
]:
|
| 63 |
+
if key not in st.session_state:
|
| 64 |
+
st.session_state[key] = default
|
| 65 |
+
|
| 66 |
+
# ---------- Loaders ----------
|
| 67 |
+
def load_txt(file):
|
| 68 |
+
raw = file.read()
|
| 69 |
+
for enc in ("utf-8", "latin-1"):
|
| 70 |
+
try:
|
| 71 |
+
return [{"source": file.name, "text": raw.decode(enc, errors="ignore")}]
|
| 72 |
+
except Exception:
|
| 73 |
+
continue
|
| 74 |
+
return [{"source": file.name, "text": raw.decode("utf-8", errors="ignore")}]
|
| 75 |
+
|
| 76 |
+
def load_pdf(file):
|
| 77 |
+
pdf = PdfReader(file)
|
| 78 |
+
text = ""
|
| 79 |
+
for page in pdf.pages:
|
| 80 |
+
text += page.extract_text() or ""
|
| 81 |
+
return [{"source": file.name, "text": text}]
|
| 82 |
+
|
| 83 |
+
def load_docx(file):
|
| 84 |
+
data = file.read()
|
| 85 |
+
doc = Document(io.BytesIO(data))
|
| 86 |
+
text = " ".join(p.text for p in doc.paragraphs)
|
| 87 |
+
return [{"source": file.name, "text": text}]
|
| 88 |
+
|
| 89 |
+
def load_csv(file):
|
| 90 |
+
data = file.read()
|
| 91 |
+
df = None
|
| 92 |
+
for enc in ("utf-8", "latin-1"):
|
| 93 |
+
try:
|
| 94 |
+
df = pd.read_csv(io.BytesIO(data), encoding=enc)
|
| 95 |
+
break
|
| 96 |
+
except Exception:
|
| 97 |
+
df = None
|
| 98 |
+
if df is None:
|
| 99 |
+
try:
|
| 100 |
+
df = pd.read_csv(io.BytesIO(data), engine="python")
|
| 101 |
+
except Exception:
|
| 102 |
+
df = pd.DataFrame()
|
| 103 |
+
text = " ".join(df.astype(str).values.flatten().tolist()) if not df.empty else ""
|
| 104 |
+
return [{"source": file.name, "text": text}]
|
| 105 |
+
|
| 106 |
+
def load_documents(files):
|
| 107 |
+
docs = []
|
| 108 |
+
for file in files or []:
|
| 109 |
+
name = file.name.lower()
|
| 110 |
+
if name.endswith(".pdf"):
|
| 111 |
+
docs += load_pdf(file)
|
| 112 |
+
elif name.endswith(".docx"):
|
| 113 |
+
docs += load_docx(file)
|
| 114 |
+
elif name.endswith(".csv"):
|
| 115 |
+
docs += load_csv(file)
|
| 116 |
+
elif name.endswith(".txt"):
|
| 117 |
+
docs += load_txt(file)
|
| 118 |
+
return docs
|
| 119 |
+
|
| 120 |
+
# ---------- Web fetch ----------
|
| 121 |
+
def fetch_web_text(url, timeout=12, retries=2, backoff=1.5):
|
| 122 |
+
for attempt in range(retries + 1):
|
| 123 |
+
try:
|
| 124 |
+
headers = {
|
| 125 |
+
"User-Agent": (
|
| 126 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
|
| 127 |
+
"AppleWebKit/537.36 (KHTML, like Gecko) "
|
| 128 |
+
"Chrome/124.0 Safari/537.36"
|
| 129 |
+
)
|
| 130 |
+
}
|
| 131 |
+
resp = requests.get(url, headers=headers, timeout=timeout)
|
| 132 |
+
resp.raise_for_status()
|
| 133 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
| 134 |
+
for tag in soup(["script", "style", "noscript"]):
|
| 135 |
+
tag.decompose()
|
| 136 |
+
text = " ".join(soup.get_text(separator=" ").split())
|
| 137 |
+
return [{"source": url, "text": text}]
|
| 138 |
+
except Exception:
|
| 139 |
+
if attempt < retries:
|
| 140 |
+
time.sleep(backoff ** attempt)
|
| 141 |
+
else:
|
| 142 |
+
return []
|
| 143 |
+
|
| 144 |
+
# ---------- Chunking ----------
|
| 145 |
+
def chunk_documents(docs, chunk_size=1000, chunk_overlap=120):
|
| 146 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 147 |
+
chunks = []
|
| 148 |
+
for doc in docs:
|
| 149 |
+
splits = splitter.split_text(doc.get("text", "") or "")
|
| 150 |
+
for idx, chunk in enumerate(splits):
|
| 151 |
+
chunks.append({"source": doc["source"], "chunk_id": f"{doc['source']}_chunk{idx}", "content": chunk})
|
| 152 |
+
return chunks
|
| 153 |
+
|
| 154 |
+
# ---------- Embeddings / Index ----------
|
| 155 |
+
@st.cache_resource(show_spinner=False)
|
| 156 |
+
def load_embedder():
|
| 157 |
+
return SentenceTransformer("all-MiniLM-L6-v2", cache_folder=os.environ.get("SENTENCE_TRANSFORMERS_HOME", HF_HOME))
|
| 158 |
+
|
| 159 |
+
def build_embeddings_index(chunks):
|
| 160 |
+
embedder = load_embedder()
|
| 161 |
+
texts = [c["content"] for c in chunks]
|
| 162 |
+
if not texts:
|
| 163 |
+
return embedder, None
|
| 164 |
+
emb = embedder.encode(texts, show_progress_bar=True, convert_to_numpy=True)
|
| 165 |
+
emb = np.asarray(emb, dtype="float32")
|
| 166 |
+
idx = faiss.IndexFlatL2(emb.shape[14])
|
| 167 |
+
idx.add(emb)
|
| 168 |
+
return embedder, idx
|
| 169 |
+
|
| 170 |
+
def retrieve(query, embedder, index, chunks, top_k=4):
|
| 171 |
+
if index is None or not chunks:
|
| 172 |
+
return []
|
| 173 |
+
q_emb = embedder.encode([query], convert_to_numpy=True)
|
| 174 |
+
q_emb = np.asarray(q_emb, dtype="float32")
|
| 175 |
+
distances, indices = index.search(q_emb, top_k)
|
| 176 |
+
out = []
|
| 177 |
+
for pos, i in enumerate(indices):
|
| 178 |
+
if i >= 0 and i < len(chunks):
|
| 179 |
+
out.append({"chunk": chunks[i], "score": float(distances[pos])})
|
| 180 |
+
return out
|
| 181 |
+
|
| 182 |
+
# ---------- LLM ----------
|
| 183 |
+
MODEL_ID = "MehdiHosseiniMoghadam/AVA-Mistral-7B-V2"
|
| 184 |
+
|
| 185 |
+
@st.cache_resource(show_spinner=False)
|
| 186 |
+
def load_llm():
|
| 187 |
+
cache_dir = os.environ.get("HF_HOME", HF_HOME)
|
| 188 |
+
_ = AutoConfig.from_pretrained(MODEL_ID, cache_dir=cache_dir, trust_remote_code=True)
|
| 189 |
+
tok = AutoTokenizer.from_pretrained(MODEL_ID, cache_dir=cache_dir, trust_remote_code=True)
|
| 190 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, cache_dir=cache_dir, trust_remote_code=True)
|
| 191 |
+
return pipeline("text-generation", model=model, tokenizer=tok, max_length=1024, do_sample=True, temperature=0.2, trust_remote_code=True, device_map="auto")
|
| 192 |
+
|
| 193 |
+
def answer_with_llm(context_chunks, query, llm):
|
| 194 |
+
context_text = "\n".join(f"[{c['chunk_id']}] {c['content']}" for c in context_chunks)
|
| 195 |
+
prompt = (
|
| 196 |
+
"Answer the following question using ONLY the provided context and cite the chunk ids used.\n"
|
| 197 |
+
f"Question: {query}\n"
|
| 198 |
+
"Context:\n"
|
| 199 |
+
f"{context_text}\n"
|
| 200 |
+
"Answer with citations:"
|
| 201 |
+
)
|
| 202 |
+
out = llm(prompt, max_length=512, num_return_sequences=1)
|
| 203 |
+
return out["generated_text"]
|
| 204 |
+
|
| 205 |
+
# ---------- Sidebar sources ----------
|
| 206 |
+
st.sidebar.header("Data sources")
|
| 207 |
+
|
| 208 |
+
uploaded_files = st.sidebar.file_uploader(
|
| 209 |
+
"Upload documents (PDF, DOCX, TXT, CSV)",
|
| 210 |
+
type=["pdf", "txt", "docx", "csv"],
|
| 211 |
+
accept_multiple_files=True,
|
| 212 |
+
help="Default per-file limit ~200MB; increase via .streamlit/config.toml if needed.",
|
| 213 |
+
)
|
| 214 |
+
with st.sidebar.expander("Upload debug"):
|
| 215 |
+
info = {
|
| 216 |
+
"type": type(uploaded_files).__name__,
|
| 217 |
+
"num_files": (len(uploaded_files) if isinstance(uploaded_files, list) else (1 if uploaded_files else 0)),
|
| 218 |
+
"names": ([f.name for f in uploaded_files] if isinstance(uploaded_files, list) else ([uploaded_files.name] if uploaded_files else [])),
|
| 219 |
+
}
|
| 220 |
+
st.write(info)
|
| 221 |
+
|
| 222 |
+
url_input = st.sidebar.text_area("Web URLs (one per line)", value="", height=120)
|
| 223 |
+
|
| 224 |
+
web_docs = []
|
| 225 |
+
if url_input.strip():
|
| 226 |
+
urls = [u.strip() for u in url_input.splitlines() if u.strip()]
|
| 227 |
+
with st.sidebar.spinner("Fetching web content..."):
|
| 228 |
+
for u in urls:
|
| 229 |
+
web_docs += fetch_web_text(u)
|
| 230 |
+
|
| 231 |
+
file_docs = load_documents(uploaded_files) if uploaded_files else []
|
| 232 |
+
all_docs = file_docs + web_docs
|
| 233 |
+
|
| 234 |
+
if all_docs:
|
| 235 |
+
st.success(f"{len(all_docs)} document(s) loaded from files and URLs.")
|
| 236 |
+
with st.spinner("Chunking and embedding..."):
|
| 237 |
+
st.session_state.chunks = chunk_documents(all_docs, chunk_size=1000, chunk_overlap=120)
|
| 238 |
+
st.session_state.embedder, st.session_state.faiss_index = build_embeddings_index(st.session_state.chunks)
|
| 239 |
+
st.write(f"{len(st.session_state.chunks)} chunks created and indexed.")
|
| 240 |
+
else:
|
| 241 |
+
st.info("Add documents or URLs in the sidebar to start.")
|
| 242 |
+
|
| 243 |
+
# ---------- Chat UI ----------
|
| 244 |
+
for m in st.session_state.messages:
|
| 245 |
+
with st.chat_message(m["role"]):
|
| 246 |
+
st.markdown(m["content"])
|
| 247 |
+
|
| 248 |
+
user_input = st.chat_input("Ask about the loaded documents...")
|
| 249 |
+
if user_input:
|
| 250 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 251 |
+
with st.chat_message("user"):
|
| 252 |
+
st.markdown(user_input)
|
| 253 |
+
|
| 254 |
+
with st.chat_message("assistant"):
|
| 255 |
+
with st.spinner("Thinking..."):
|
| 256 |
+
if st.session_state.chunks:
|
| 257 |
+
llm = load_llm()
|
| 258 |
+
results = retrieve(user_input, st.session_state.embedder, st.session_state.faiss_index, st.session_state.chunks, top_k=4)
|
| 259 |
+
context_chunks = [r["chunk"] for r in results]
|
| 260 |
+
answer = answer_with_llm(context_chunks, user_input, llm)
|
| 261 |
+
st.markdown(answer)
|
| 262 |
+
sources = "\n".join(f"[{r['chunk']['chunk_id']} from {r['chunk']['source']}]" for r in results) or "No sources (no matches)."
|
| 263 |
+
with st.expander("Sources"):
|
| 264 |
+
st.code(sources)
|
| 265 |
+
else:
|
| 266 |
+
answer = "No documents indexed yet. Add files or URLs in the sidebar and try again."
|
| 267 |
+
st.warning(answer)
|
| 268 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
| 269 |
+
|
| 270 |
+
st.caption("Chat RAG • Mistral-7B (open), FAISS, SentenceTransformers, and Web URLs • Streamlit chat UI")
|