Spaces:
Running
Running
upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""MineROI-Net Gradio App - Updated to use complete historical blockchain data"""
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
from datetime import datetime, timedelta
|
| 7 |
+
import os
|
| 8 |
+
from miner_specs import MINER_SPECS, get_miner_list, ELECTRICITY_RATES
|
| 9 |
+
from fetch_blockchain_data import get_blockchain_data_for_date, load_complete_blockchain_data
|
| 10 |
+
from preprocessing import get_latest_sequence
|
| 11 |
+
from electricity_prices import get_electricity_rate
|
| 12 |
+
from predictor import MineROIPredictor
|
| 13 |
+
from fetch_asic_prices import fetch_asic_price_for_date, FALLBACK_PRICES
|
| 14 |
+
|
| 15 |
+
MODEL_PATH = "best_model_weights.pth"
|
| 16 |
+
|
| 17 |
+
# Predictor (global)
|
| 18 |
+
predictor = None
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def init_predictor():
|
| 22 |
+
"""Initialize predictor once"""
|
| 23 |
+
global predictor
|
| 24 |
+
if predictor is None:
|
| 25 |
+
predictor = MineROIPredictor(MODEL_PATH)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def init_app():
|
| 29 |
+
"""Initialize app - load complete blockchain data into memory"""
|
| 30 |
+
print("\n" + "="*80)
|
| 31 |
+
print("๐ INITIALIZING MINEROI-NET APP")
|
| 32 |
+
print("="*80)
|
| 33 |
+
|
| 34 |
+
# Load complete blockchain data into memory (one-time)
|
| 35 |
+
complete_df = load_complete_blockchain_data()
|
| 36 |
+
|
| 37 |
+
if complete_df is not None:
|
| 38 |
+
print(f"\nโ
Complete blockchain data loaded successfully!")
|
| 39 |
+
print(f" {len(complete_df):,} days available")
|
| 40 |
+
print(f" Date range: {complete_df['date'].min().date()} to {complete_df['date'].max().date()}")
|
| 41 |
+
print(f"\nโ
You can now predict for ANY date in this range!")
|
| 42 |
+
else:
|
| 43 |
+
print(f"\nโ ๏ธ WARNING: blockchain_data_complete.csv not found!")
|
| 44 |
+
print(f" App will work with limited recent data only")
|
| 45 |
+
print(f"\n๐ฅ To enable full historical predictions:")
|
| 46 |
+
print(f" 1. Run: python download_complete_blockchain_data.py")
|
| 47 |
+
print(f" 2. Upload blockchain_data_complete.csv to your Gradio space")
|
| 48 |
+
|
| 49 |
+
print("="*80 + "\n")
|
| 50 |
+
|
| 51 |
+
# Initialize predictor
|
| 52 |
+
init_predictor()
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def predict_roi(miner_name, region, prediction_date):
|
| 56 |
+
"""Make prediction for a specific date"""
|
| 57 |
+
try:
|
| 58 |
+
window_size = 30
|
| 59 |
+
|
| 60 |
+
# Convert prediction_date to datetime
|
| 61 |
+
if isinstance(prediction_date, str):
|
| 62 |
+
prediction_date = datetime.strptime(prediction_date, '%Y-%m-%d')
|
| 63 |
+
|
| 64 |
+
print(f"\n{'='*80}")
|
| 65 |
+
print(f"PREDICTION REQUEST")
|
| 66 |
+
print(f"{'='*80}")
|
| 67 |
+
print(f"Miner: {miner_name}")
|
| 68 |
+
print(f"Region: {region}")
|
| 69 |
+
print(f"Date: {prediction_date.date()}")
|
| 70 |
+
print(f"{'='*80}\n")
|
| 71 |
+
|
| 72 |
+
# Get blockchain data for this specific date (30 days before + target date)
|
| 73 |
+
print(f"๐ก Fetching blockchain data for {prediction_date.date()}...")
|
| 74 |
+
blockchain_df = get_blockchain_data_for_date(prediction_date, window_size=window_size)
|
| 75 |
+
|
| 76 |
+
if blockchain_df is None or len(blockchain_df) < window_size:
|
| 77 |
+
error_msg = f"""
|
| 78 |
+
<div style='background: #e74c3c; color: white; padding: 20px; border-radius: 10px;'>
|
| 79 |
+
<h3 style='margin: 0;'>โ Error: Insufficient Data</h3>
|
| 80 |
+
<p style='margin: 10px 0 0 0;'>
|
| 81 |
+
Not enough blockchain data available for {prediction_date.date()}.
|
| 82 |
+
Need at least {window_size} days of historical data.
|
| 83 |
+
</p>
|
| 84 |
+
</div>
|
| 85 |
+
"""
|
| 86 |
+
return error_msg, error_msg, None, None
|
| 87 |
+
|
| 88 |
+
print(f"โ
Got {len(blockchain_df)} days of data")
|
| 89 |
+
print(f" Date range: {blockchain_df['date'].min().date()} to {blockchain_df['date'].max().date()}")
|
| 90 |
+
|
| 91 |
+
# Fetch ASIC price for the selected date
|
| 92 |
+
print(f"\n๐ฐ Fetching ASIC price for {prediction_date.date()}...")
|
| 93 |
+
miner_prices, data_available = fetch_asic_price_for_date(prediction_date)
|
| 94 |
+
|
| 95 |
+
if not data_available:
|
| 96 |
+
warning_html = f"""
|
| 97 |
+
<div style='background: #f39c12; color: white; padding: 15px; border-radius: 10px; margin-bottom: 20px;'>
|
| 98 |
+
<h3 style='margin: 0;'>โ ๏ธ Warning: Price Data Unavailable</h3>
|
| 99 |
+
<p style='margin: 10px 0 0 0;'>
|
| 100 |
+
No ASIC price data available for {prediction_date.date()}.
|
| 101 |
+
Using fallback prices (approximate market values).
|
| 102 |
+
</p>
|
| 103 |
+
</div>
|
| 104 |
+
"""
|
| 105 |
+
else:
|
| 106 |
+
warning_html = ""
|
| 107 |
+
|
| 108 |
+
miner_price = miner_prices.get(miner_name, FALLBACK_PRICES.get(miner_name, 2500))
|
| 109 |
+
price_source = "API" if data_available else "Fallback"
|
| 110 |
+
|
| 111 |
+
print(f" Price for {miner_name}: ${miner_price:,.2f} ({price_source})")
|
| 112 |
+
|
| 113 |
+
# Get sequence (now uses blockchain_df which is date-specific)
|
| 114 |
+
print(f"\n๐ง Preparing features...")
|
| 115 |
+
sequence, _, pred_date = get_latest_sequence(blockchain_df, miner_name, miner_price, region, window_size)
|
| 116 |
+
print(f"โ
Sequence prepared: {sequence.shape}")
|
| 117 |
+
|
| 118 |
+
# Predict
|
| 119 |
+
print(f"\n๐ค Running prediction...")
|
| 120 |
+
result = predictor.predict(sequence, region)
|
| 121 |
+
print(f"โ
Prediction: {result['predicted_label']} ({result['confidence']:.1%})")
|
| 122 |
+
|
| 123 |
+
# Create displays
|
| 124 |
+
miner_info = create_miner_info(miner_name, miner_price, region, price_source, prediction_date)
|
| 125 |
+
prediction_html = warning_html + create_prediction_html(result, pred_date, window_size)
|
| 126 |
+
confidence_chart = create_confidence_chart(result['probabilities'])
|
| 127 |
+
price_chart = create_price_chart(blockchain_df, window_size)
|
| 128 |
+
|
| 129 |
+
print(f"{'='*80}\n")
|
| 130 |
+
|
| 131 |
+
return miner_info, prediction_html, confidence_chart, price_chart
|
| 132 |
+
|
| 133 |
+
except Exception as e:
|
| 134 |
+
import traceback
|
| 135 |
+
error_details = traceback.format_exc()
|
| 136 |
+
print(f"\nโ ERROR:")
|
| 137 |
+
print(error_details)
|
| 138 |
+
|
| 139 |
+
error = f"""
|
| 140 |
+
<div style='background: #e74c3c; color: white; padding: 20px; border-radius: 10px;'>
|
| 141 |
+
<h3 style='margin: 0;'>โ Prediction Error</h3>
|
| 142 |
+
<p style='margin: 10px 0 0 0;'>{str(e)}</p>
|
| 143 |
+
</div>
|
| 144 |
+
"""
|
| 145 |
+
return error, error, None, None
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def create_miner_info(miner_name, price, region, source, prediction_date):
|
| 149 |
+
specs = MINER_SPECS[miner_name]
|
| 150 |
+
# Daily electricity rate for the prediction date (with fallback beyond CSV range)
|
| 151 |
+
elec_rate = get_electricity_rate(region, prediction_date.date())
|
| 152 |
+
daily_cost = (specs['power'] * 24 / 1000) * elec_rate
|
| 153 |
+
|
| 154 |
+
# Color coding for source
|
| 155 |
+
if source == "API":
|
| 156 |
+
badge_color = "#27ae60" # Green
|
| 157 |
+
else:
|
| 158 |
+
badge_color = "#e74c3c" # Red for fallback
|
| 159 |
+
|
| 160 |
+
return f"""
|
| 161 |
+
<div style="background: #1e1e1e; padding: 20px; border-radius: 10px; border: 1px solid #333; color: #ffffff;">
|
| 162 |
+
<h3 style="color: #F7931A; margin-top: 0;">{specs['full_name']}</h3>
|
| 163 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px;">
|
| 164 |
+
<div>
|
| 165 |
+
<p style="color: #ffffff;"><strong style="color: #ffffff;">Hashrate:</strong> {specs['hashrate']} TH/s</p>
|
| 166 |
+
<p style="color: #ffffff;"><strong style="color: #ffffff;">Power:</strong> {specs['power']} W</p>
|
| 167 |
+
<p style="color: #ffffff;"><strong style="color: #ffffff;">Efficiency:</strong> {specs['efficiency']} W/TH</p>
|
| 168 |
+
</div>
|
| 169 |
+
<div>
|
| 170 |
+
<p style="color: #ffffff;"><strong style="color: #ffffff;">Price ({prediction_date.date()}):</strong> ${price:,.2f}
|
| 171 |
+
<span style="background: {badge_color}; color: white; padding: 2px 8px; border-radius: 4px; font-size: 0.8em;">{source}</span>
|
| 172 |
+
</p>
|
| 173 |
+
<p style="color: #ffffff;"><strong style="color: #ffffff;">Region:</strong> {region.title()}</p>
|
| 174 |
+
<p style="color: #ffffff;"><strong style="color: #ffffff;">Electricity:</strong> ${elec_rate:.4f}/kWh</p>
|
| 175 |
+
</div>
|
| 176 |
+
</div>
|
| 177 |
+
<div style="margin-top: 15px; padding-top: 15px; border-top: 1px solid #333;">
|
| 178 |
+
<p style="color: #ffffff;"><strong style="color: #ffffff;">Daily Electricity Cost:</strong> ${daily_cost:.2f}</p>
|
| 179 |
+
</div>
|
| 180 |
+
</div>
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def create_prediction_html(result, date, window):
|
| 185 |
+
label = result['predicted_label']
|
| 186 |
+
conf = result['confidence']
|
| 187 |
+
|
| 188 |
+
if 'Unprofitable' in label:
|
| 189 |
+
color, emoji, rec = '#e74c3c', '๐ด', 'NOT RECOMMENDED'
|
| 190 |
+
elif 'Marginal' in label:
|
| 191 |
+
color, emoji, rec = '#f39c12', '๐ก', 'PROCEED WITH CAUTION'
|
| 192 |
+
else:
|
| 193 |
+
color, emoji, rec = '#27ae60', '๐ข', 'GOOD OPPORTUNITY'
|
| 194 |
+
|
| 195 |
+
return f"""
|
| 196 |
+
<div style="background: #1e1e1e; padding: 30px; border-radius: 10px; border: 2px solid {color}; text-align: center; color: #ffffff;">
|
| 197 |
+
<h2 style="color: {color}; margin: 0 0 10px 0;">{emoji} {label}</h2>
|
| 198 |
+
<p style="font-size: 1.2em; margin: 10px 0; color: #ffffff;"><strong style="color: #ffffff;">Confidence: {conf:.1%}</strong></p>
|
| 199 |
+
<p style="font-size: 1.5em; color: {color}; margin: 20px 0;"><strong style="color: {color};">{rec}</strong></p>
|
| 200 |
+
<p style="color: #cccccc; margin: 10px 0 0 0; font-size: 0.9em;">
|
| 201 |
+
Prediction based on data up to: {date.strftime('%Y-%m-%d')}<br>Window: {window} days
|
| 202 |
+
</p>
|
| 203 |
+
</div>
|
| 204 |
+
"""
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def create_confidence_chart(probs):
|
| 208 |
+
categories = ['Unprofitable', 'Marginal', 'Profitable']
|
| 209 |
+
values = [probs['unprofitable'], probs['marginal'], probs['profitable']]
|
| 210 |
+
colors = ['#e74c3c', '#f39c12', '#27ae60']
|
| 211 |
+
|
| 212 |
+
fig = go.Figure()
|
| 213 |
+
fig.add_trace(go.Bar(x=categories, y=values, marker_color=colors, text=[f'{v:.1%}' for v in values], textposition='auto'))
|
| 214 |
+
fig.update_layout(title='Prediction Confidence', yaxis_title='Probability', yaxis=dict(range=[0, 1], tickformat='.0%'),
|
| 215 |
+
template='plotly_dark', height=300, margin=dict(l=0, r=0, t=40, b=0))
|
| 216 |
+
return fig
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def create_price_chart(df, window):
|
| 220 |
+
# Show more context if available
|
| 221 |
+
display_days = min(len(df), window * 2)
|
| 222 |
+
df_display = df.tail(display_days)
|
| 223 |
+
|
| 224 |
+
fig = go.Figure()
|
| 225 |
+
fig.add_trace(go.Scatter(x=df_display['date'], y=df_display['bitcoin_price'], mode='lines', name='Bitcoin Price', line=dict(color='#F7931A', width=2)))
|
| 226 |
+
fig.update_layout(title=f'Bitcoin Price ({len(df_display)} Days)', xaxis_title='Date', yaxis_title='Price (USD)',
|
| 227 |
+
template='plotly_dark', height=300, margin=dict(l=0, r=0, t=40, b=0))
|
| 228 |
+
return fig
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def create_interface():
|
| 232 |
+
# Default date: today
|
| 233 |
+
today = datetime.now().date()
|
| 234 |
+
|
| 235 |
+
# Check if complete data is available to set min_date
|
| 236 |
+
complete_df = load_complete_blockchain_data()
|
| 237 |
+
if complete_df is not None:
|
| 238 |
+
min_date = complete_df['date'].min().date()
|
| 239 |
+
max_date = complete_df['date'].max().date()
|
| 240 |
+
date_info = f"{min_date} to {max_date}"
|
| 241 |
+
else:
|
| 242 |
+
min_date = datetime(2018, 1, 22).date()
|
| 243 |
+
max_date = today
|
| 244 |
+
date_info = "โ ๏ธ Limited (complete data not loaded)"
|
| 245 |
+
|
| 246 |
+
with gr.Blocks(title="MineROI-Net") as app:
|
| 247 |
+
gr.Markdown("# ๐ช MineROI-Net: Bitcoin Mining Hardware ROI Predictor")
|
| 248 |
+
# gr.Markdown("### Powered by Complete Historical Blockchain Data")
|
| 249 |
+
|
| 250 |
+
with gr.Row():
|
| 251 |
+
with gr.Column(scale=1):
|
| 252 |
+
gr.Markdown("### Configuration")
|
| 253 |
+
miner = gr.Dropdown(choices=sorted(get_miner_list()), value='s19pro', label="ASIC Miner")
|
| 254 |
+
region = gr.Dropdown(choices=['texas', 'china', 'ethiopia'], value='texas', label="Region")
|
| 255 |
+
|
| 256 |
+
# Date picker for prediction date
|
| 257 |
+
prediction_date = gr.Textbox(
|
| 258 |
+
label="๐
Prediction Date",
|
| 259 |
+
value=str(today),
|
| 260 |
+
info=f"Format: YYYY-MM-DD (e.g., 2024-12-08)",
|
| 261 |
+
placeholder="2024-12-08",
|
| 262 |
+
elem_classes="date-input"
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
btn = gr.Button("๐ฎ Predict ROI", variant="primary", size="lg")
|
| 266 |
+
|
| 267 |
+
gr.Markdown(f"""
|
| 268 |
+
### About
|
| 269 |
+
- ๐ด **Unprofitable** (ROI โค 0)
|
| 270 |
+
- ๐ก **Marginal** (0 < ROI < 1)
|
| 271 |
+
- ๐ข **Profitable** (ROI โฅ 1)
|
| 272 |
+
|
| 273 |
+
**Model:** 83.7% accuracy (30-day window)
|
| 274 |
+
|
| 275 |
+
**Date Range:** {date_info}
|
| 276 |
+
|
| 277 |
+
**Price Source:**
|
| 278 |
+
- ๐ข Green badge = Real API data
|
| 279 |
+
- ๐ด Red badge = Fallback estimate
|
| 280 |
+
|
| 281 |
+
**Data Source:**
|
| 282 |
+
- Uses complete historical blockchain data
|
| 283 |
+
- Loaded at app startup for fast predictions
|
| 284 |
+
""")
|
| 285 |
+
|
| 286 |
+
with gr.Column(scale=2):
|
| 287 |
+
gr.Markdown("### Results")
|
| 288 |
+
miner_info = gr.HTML()
|
| 289 |
+
prediction = gr.HTML()
|
| 290 |
+
with gr.Row():
|
| 291 |
+
conf_plot = gr.Plot()
|
| 292 |
+
price_plot = gr.Plot()
|
| 293 |
+
|
| 294 |
+
btn.click(fn=predict_roi, inputs=[miner, region, prediction_date], outputs=[miner_info, prediction, conf_plot, price_plot])
|
| 295 |
+
|
| 296 |
+
return app
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
if __name__ == "__main__":
|
| 300 |
+
# Initialize app (loads complete data into memory)
|
| 301 |
+
init_app()
|
| 302 |
+
|
| 303 |
+
# Launch
|
| 304 |
+
app = create_interface()
|
| 305 |
+
app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|