File size: 22,991 Bytes
efc78fc 3517db6 efc78fc 11b1148 3ef0762 efc78fc 82f1e62 efc78fc cb45765 efc78fc 268788d efc78fc 2106e26 3ef0762 2106e26 3ef0762 2106e26 3ef0762 2106e26 3ef0762 2106e26 d06d70a 2106e26 3ef0762 2106e26 3ef0762 2106e26 d06d70a 2106e26 d06d70a 497ade3 d06d70a 33ed8c0 a1709d3 d06d70a 3ef0762 2106e26 82f1e62 12db54c f1573b6 12db54c 82f1e62 d06d70a 0169c26 970c66c 0169c26 970c66c 0169c26 11b1148 0169c26 11b1148 0169c26 11b1148 0169c26 2100206 12db54c 2cc0802 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
import os
import glob
from pathlib import Path
import gradio as gr
import jpype
import jpype.imports
import pandas as pd
from graphviz import Digraph
from jpype import JClass, getDefaultJVMPath
from pslpython.partition import Partition
def _find_psl_jars() -> list[str]:
"""
Priority:
1) Any *.jar inside PSL_JARS_DIR (if set)
2) Any *.jar in ./jars next to this script
3) Installed pslpython runtime jar
"""
jars: list[str] = []
# 2) Local ./jars
this_dir = Path(__file__).resolve().parent
jars_dir = f"{this_dir}/.jars"
jars.extend(glob.glob(f"{jars_dir}/*.jar"))
# Deduplicate while preserving order
dedup = []
seen = set()
for j in jars:
if j not in seen and Path(j).is_file():
seen.add(j)
dedup.append(j)
return dedup
def start_psl_jvm(verbose: bool = True) -> list[str]:
"""
Start a JVM with a classpath that includes PSL jars.
Returns the list of jars used.
"""
if jpype.isJVMStarted():
if verbose:
print("[PSL] JVM already started.")
return []
jars = _find_psl_jars()
if not jars:
raise RuntimeError(
"No PSL jars found. Place jars under /jars"
)
classpath = os.pathsep.join(jars)
# If getDefaultJVMPath() fails on your platform, set JAVA_HOME first.
jvm_path = getDefaultJVMPath()
# Start JVM
jpype.startJVM(
jvm_path,
f"-Djava.class.path={classpath}",
# Optional: tighten memory or logging here
# "-Xms256m", "-Xmx1024m",
)
# Sanity check that PSL classes are visible
GA = JClass("org.linqs.psl.model.atom.GroundAtom")
if verbose:
print(f"[PSL] JVM started with {len(jars)} jars.")
for j in jars:
print(f" - {j}")
print(f"[PSL] Sanity check: loaded {GA}")
return jars
# =========================
# Static PSL rules + graph app
# =========================
import os
import io
import gradio as gr
import pandas as pd
from graphviz import Digraph
import pslpython
from pslpython.model import Model
from pslpython.predicate import Predicate
from pslpython.rule import Rule
MODEL_NAME = 'minimal-circuit'
ADDITIONAL_PSL_OPTIONS = {
'runtime.log.level': 'INFO',
# 'runtime.db.type': 'Postgres',
# 'runtime.db.pg.name': 'psl',
}
# --- Master rule dictionary (single source of truth) ---
# Conventions:
# - body: list of literals (allow leading '!' for negation)
# - head: single literal string; '!' means negated head
# - weight: float for soft rules
# - hard: True -> hard constraint (no weight, trailing ".")
# - squared: True -> append '^2'
RULES = [
{"name":"R1_perfdrop_implies_critical", "weight":4.0,
"body":["InCircuit(E,C)", "PerfDrop(E,C)"], "head":"Critical(E,C)", "squared":True,
"comment":"High performance drop on removal implies the edge is critical (necessary) for C."},
{"name":"R2_safe_implies_removable", "weight":1.0,
"body":["InCircuit(E,C)", "SafeToRemove(E,C)"], "head":"Removable(E,C)", "squared":True,
"comment":"If an edge is in C and appears safe to remove, infer itβs removable."},
{"name":"R3_removable_excludes_critical", "weight":0.6,
"body":["Removable(E,C)"], "head":"!Critical(E,C)", "squared":True,
"comment":"Edges inferred removable should not be marked critical (soft mutual exclusion)."},
{"name":"R4_minimal_excludes_removable", "weight":1.0,
"body":["Minimal(C)", "InCircuit(E,C)"], "head":"!Removable(E,C)", "squared":True,
"comment":"A minimal circuit should not contain removable edges."},
{"name":"R5_remmasshi_neg_minimal", "weight":4.5,
"body":["RemMassHi(C)"], "head":"!Minimal(C)", "squared":True,
"comment":"High total removable mass argues against minimality."},
{"name":"R6_dominates_neg_minimal", "weight":8.0,
"body":["Dominates(C2,C)"], "head":"!Minimal(C)", "squared":True,
"comment":"If a cheaper sufficient rival dominates C, C is not minimal."},
{"name":"R7_insufficient_neg_minimal", "weight":8.0,
"body":["!Sufficient(C)"], "head":"!Minimal(C)", "squared":True,
"comment":"Minimality applies only to sufficient circuits."},
{"name":"R8_rand_circuit_better_neg_minimal", "weight":4.0,
"body":["RandCircuitBetter(C,Cr)"], "head":"!Minimal(C)", "squared":True,
"comment":"If random comparable circuits often outperform C, it is unlikely minimal."},
{"name":"R9_tie_uncovered_neg_minimal", "weight":1.2,
"body":["Tie(E1,E2,C)", "!TieCovered(E1,E2,C)"], "head":"!Minimal(C)", "squared":True,
"comment":"Near-ties must be explored; uncovered ties weaken claims of minimality."},
{"name":"R10_multiple_startseed_minimal", "weight":0.5,
"body":["FromMultipleStartSeeds(C)"], "head":"Minimal(C)", "squared":True,
"comment":"Consistent convergence to the same C from multiple starts nudges minimality upward."},
# Hard constraint example (no weight, trailing period)
{"name":"HC1_dominates_implies_not_minimal", "hard":True,
"body":["Dominates(C2,C)"], "head":"!Minimal(C)",
"comment":"HARD: Whenever C2 dominates C, C cannot be minimal."},
]
# --- Helpers to build PSL text and the graph ---
def _literal_to_psl(lit: str) -> str:
return lit
def _rule_to_psl(rule: dict) -> str:
body = " & ".join(_literal_to_psl(l) for l in rule["body"])
head = _literal_to_psl(rule["head"])
if rule.get("hard", False):
return f"{body} -> {head} ."
weight = rule["weight"]
exp = " ^2" if rule.get("squared", False) else ""
return f"{weight}: {body} -> {head}{exp}"
def add_rules(model: Model, rules=RULES):
for r in rules:
model.add_rule(Rule(_rule_to_psl(r)))
def _pred_name(lit: str) -> str:
return lit.lstrip('!').split('(')[0].strip()
def _is_negated(lit: str) -> bool:
return lit.strip().startswith('!')
def rules_to_graphviz_file(rules=RULES, basename: str = "rules_graph") -> str:
"""
Render Graphviz to a PNG on disk and return the filepath.
Produces 'basename.png' next to your app.
"""
g = Digraph(name="CircuitMinimality", format="png", engine="dot")
g.attr(rankdir="LR", fontname="Helvetica")
g.node_attr.update(shape="box", style="rounded,filled", fillcolor="#f8f8f8", fontname="Helvetica")
def pred_name(lit: str) -> str:
return lit.lstrip('!').split('(')[0].strip()
def is_negated(lit: str) -> bool:
return lit.strip().startswith('!')
# Nodes
preds = set()
for r in rules:
preds.update(pred_name(x) for x in (r["body"] + [r["head"]]))
for p in sorted(preds):
g.node(p)
# Edges
for r in rules:
head_lit = r["head"]
head_pred = pred_name(head_lit)
neg_head = is_negated(head_lit)
color = "#2ca02c" if not neg_head else "#d62728"
style = "solid"
label = f"{r['name']} ({'HARD' if r.get('hard', False) else r.get('weight', '')})".strip()
for b in r["body"]:
g.edge(pred_name(b), head_pred, color=color, fontcolor=color, style=style, penwidth="2", label=label)
# Render to file: returns full path without extension; add '.png'
out = g.render(filename=basename, cleanup=True) # writes basename.png
png_path = out if out.endswith(".png") else f"{out}.png"
return png_path
def _rules_commentary_md(rules=RULES) -> str:
lines = ["### Rule Commentary", ""]
for r in rules:
badge = "**HARD**" if r.get("hard", False) else f"**w={r.get('weight','')}**"
psl = _rule_to_psl(r)
lines.append(f"- **{r['name']}** ({badge}) \n {r['comment']} \n ` {psl} `")
return "\n".join(lines)
# --- Compute everything up-front (static app) ---
# 1) Start JVM and report status
try:
used_jars = start_psl_jvm(verbose=False) # defined in your earlier block
jvm_already = jpype.isJVMStarted() and (len(used_jars) == 0)
JVM_STATUS = "β
JVM already running." if jvm_already else f"β
JVM started with {len(used_jars)} jar(s)."
if used_jars:
JVM_STATUS += "\n" + "\n".join([f"- {p}" for p in used_jars])
# Quick class sanity
_ = JClass("org.linqs.psl.model.atom.GroundAtom")
except Exception as e:
JVM_STATUS = f"β JVM start failed: {e}"
# 2) Build commentary and graph image
COMMENTARY_MD = _rules_commentary_md(RULES)
def add_predicates(model):
# Structure & evaluation
model.add_predicate(Predicate('InCircuit', size=2)) # (E, C)
model.add_predicate(Predicate('Sufficient', size=1)) # (C)
model.add_predicate(Predicate('PerfDrop', size=2)) # (E, C)
model.add_predicate(Predicate('SafeToRemove', size=2)) # (E, C)
model.add_predicate(Predicate('RemMassHi', size=1)) # (C)
# Latents / targets
model.add_predicate(Predicate('Removable', size=2)) # (E, C)
model.add_predicate(Predicate('Critical', size=2)) # (E, C)
model.add_predicate(Predicate('Minimal', size=1)) # (C)
# Comparators / alternatives
model.add_predicate(Predicate('Dominates', size=2)) # (C2, C)
model.add_predicate(Predicate('RandCircuitBetter', size=2)) # (C, Cr)
# Search coverage (optional)
model.add_predicate(Predicate('Tie', size=3)) # (E1, E2, C)
model.add_predicate(Predicate('TieCovered', size=3)) # (E1, E2, C)
model.add_predicate(Predicate('FromMultipleStartSeeds', size=1)) # (C)
def add_rules(model, rules=RULES, attach_comments: bool = False):
"""Add rules to a pslpython model from the RULES dict."""
for r in rules:
psl_text = _rule_to_psl(r).replace("->", "->").replace("!", "!")
model.add_rule(Rule(psl_text))
if attach_comments and r.get("comment"):
print(f"# {r['name']}: {r['comment']}")
def infer(model):
"""Placeholder inference call (can later add data)."""
return model.infer(psl_options=ADDITIONAL_PSL_OPTIONS)
def build_model(model_name=MODEL_NAME):
"""Build a full PSL model from scratch."""
model = Model(model_name)
add_predicates(model)
add_rules(model)
return model
# -------------------------
# Build model + summary text
# -------------------------
model = build_model()
def summarize_model(model: Model):
"""Return Markdown summary of predicates and rules."""
preds = model.get_predicates()
lines = [
"### PSL Model Build Summary",
f"- Model name: **{model._name}**",
f"- Total predicates: {len(preds)}",
f"- Total rules: {len(RULES)}",
"",
"#### Predicates:"
]
for pred_name, p in preds.items():
lines.append(f"- `{pred_name}` (arity = {len(p._types)})")
lines.append("\n#### Rules:")
for r in RULES:
desc = r['comment']
lines.append(f"- **{r['name']}** β {desc}")
return "\n".join(lines)
MODEL_SUMMARY_MD = summarize_model(model)
# -------------------------
# Graphviz image (from before)
# -------------------------
GRAPH_PATH = rules_to_graphviz_file(RULES, basename="rules_graph")
# =========================
# ATOMS (facts) + loader + static summary table
# =========================
# Note that observations and targets may never overlap.
ATOMS = {
# Unary: Minimal(C)
"Minimal": {
"OBS": pd.DataFrame({"C": ["C4", "C5"], "VALUE": [1.0, 0.0]}),
"TARGETS": pd.DataFrame({"C": ["C1", "C2", "C3"], "VALUE": [0.5, 0.5, 0.5]}),
"TRUTH": pd.DataFrame({"C": ["C3"], "VALUE": [0.2]}),
},
# Unary: Sufficient(C)
"Sufficient": {
"OBS": pd.DataFrame({"C": ["C1", "C2", "C3"], "VALUE": [1.0, 1.0, 0.0]}),
"TARGETS": pd.DataFrame({"C": ["C4"], "VALUE": [0.5]}),
"TRUTH": pd.DataFrame({"C": ["C1", "C2", "C3", "C4"],"VALUE": [1.0, 1.0, 0.0, 1.0]}),
},
# Unary: RemMassHi(C)
"RemMassHi": {
"OBS": pd.DataFrame({"C": ["C2"], "VALUE": [1.0]}),
"TARGETS": pd.DataFrame({"C": ["C1", "C3"], "VALUE": [0.5, 0.5]}),
},
# Unary: FromMultipleStartSeeds(C)
"FromMultipleStartSeeds": {
"OBS": pd.DataFrame({"C": ["C1", "C2", "C3"], "VALUE": [1.0, 1.0, 0.0]}),
},
# Binary: InCircuit(E,C)
"InCircuit": {
"OBS": pd.DataFrame({"E": ["e1","e2","e3"], "C": ["C1","C1","C1"], "VALUE": [1.0, 1.0, 1.0]}),
"TARGETS": pd.DataFrame({"E": ["e4","e5"], "C": ["C2","C2"], "VALUE": [0.5, 0.5]}),
},
# Binary: PerfDrop(E,C)
"PerfDrop": {
"OBS": pd.DataFrame({"E": ["e1","e2","e3","e4"], "C": ["C1","C1","C1","C2"], "VALUE": [0.40, 0.10, 0.50, 0.20]}),
"TARGETS": pd.DataFrame({"E": ["e5","e6"], "C": ["C2","C2"], "VALUE": [0.5, 0.5]}),
},
# Binary: SafeToRemove(E,C)
"SafeToRemove": {
"OBS": pd.DataFrame({"E": ["e2","e4","e5"], "C": ["C1","C2","C2"], "VALUE": [0.90, 0.80, 0.30]}),
"TARGETS": pd.DataFrame({"E": ["e1","e3"], "C": ["C1","C1"], "VALUE": [0.5, 0.5]}),
},
# Binary: Removable(E,C)
"Removable": {
"TARGETS": pd.DataFrame({
"E": ["e1","e2","e3","e5"],
"C": ["C1","C1","C1","C2"],
"VALUE": [0.5, 0.5, 0.5, 0.5],
}),
"OBS": pd.DataFrame({"E": ["e4"], "C": ["C2"], "VALUE": [0.2]}),
},
# Binary: Critical(E,C)
"Critical": {
"TARGETS": pd.DataFrame({
"E": ["e1","e2","e3","e4","e5","e6"],
"C": ["C1","C1","C1","C2","C2","C2"],
"VALUE": [0.5, 0.5, 0.5, 0.5, 0.5, 0.5],
}),
},
# Binary: Dominates(C2,C)
"Dominates": {
"OBS": pd.DataFrame({"C2": ["C2","C3"], "C": ["C1","C1"], "VALUE": [1.0, 0.0]}),
"TARGETS": pd.DataFrame({"C2": ["C3"], "C": ["C2"], "VALUE": [0.5]}),
},
# Binary: RandCircuitBetter(C,Cr)
"RandCircuitBetter": {
"OBS": pd.DataFrame({"C": ["C1","C2"], "Cr": ["R1","R1"], "VALUE": [1.0, 0.0]}),
"TARGETS": pd.DataFrame({"C": ["C1"], "Cr": ["R2"], "VALUE": [0.5]}),
},
# Ternary: Tie(E1,E2,C)
"Tie": {
"OBS": pd.DataFrame({"E1": ["e1","e2","e3"], "E2": ["e2","e3","e4"], "C": ["C1","C1","C1"], "VALUE": [1.0, 0.0, 0.2]}),
"TARGETS": pd.DataFrame({"E1": ["e5","e6"], "E2": ["e6","e7"], "C": ["C2","C2"], "VALUE": [0.5, 0.5]}),
},
# Ternary: TieCovered(E1,E2,C)
"TieCovered": {
"OBS": pd.DataFrame({"E1": ["e1","e2"], "E2": ["e2","e3"], "C": ["C1","C1"], "VALUE": [1.0, 1.0]}),
"TARGETS": pd.DataFrame({"E1": ["e3","e5","e6"], "E2": ["e4","e6","e7"], "C": ["C1","C2","C2"], "VALUE": [0.5, 0.5, 0.5]}),
},
}
# 2) Loader: map strings -> Partition, and friendly columns -> 0..k with last=VALUE
_PARTITION_MAP = {
"OBS": Partition.OBSERVATIONS,
"TARGETS": Partition.TARGETS,
"TRUTH": Partition.TRUTH,
}
def _rename_cols_for_psl(df: pd.DataFrame) -> pd.DataFrame:
"""
Convert human-friendly columns to PSL's required integer columns:
args -> 0..k-1 in order of appearance, last column = k is VALUE.
"""
cols = list(df.columns)
assert "VALUE" in cols, "Each frame must include a VALUE column."
arg_cols = [c for c in cols if c != "VALUE"]
new_cols = {col: i for i, col in enumerate(arg_cols)}
new_cols["VALUE"] = len(arg_cols)
return df.rename(columns=new_cols)[list(range(len(arg_cols)+1))]
def load_atoms_config(model, atoms=ATOMS):
"""Load the ATOMS config into the PSL model, one predicate at a time."""
for pred_name, parts in atoms.items():
pred = model.get_predicate(pred_name)
for part_key, df in parts.items():
partition = _PARTITION_MAP[part_key]
pred.add_data(partition, _rename_cols_for_psl(df))
# --- Build & load once (static) ---
# Reuse the model you already built
model = build_model()
load_atoms_config(model, ATOMS)
# Make a compact summary table for display (rows=predicate, cols=counts)
import numpy as np
def atoms_summary_table(atoms=ATOMS) -> pd.DataFrame:
rows = []
for pname, parts in atoms.items():
obs = len(parts.get("OBS", pd.DataFrame()))
tgt = len(parts.get("TARGETS", pd.DataFrame()))
tru = len(parts.get("TRUTH", pd.DataFrame()))
rows.append({"Predicate": pname, "Observations": obs, "Targets": tgt, "Truth": tru})
df = pd.DataFrame(rows).sort_values("Predicate").reset_index(drop=True)
return df
ATOMS_TABLE = atoms_summary_table(ATOMS)
ATOMS_COMMENTARY = (
"### Facts/Atoms Overview\n"
"- **Observations** are known inputs (fixed evidence).\n"
"- **Targets** are latent atoms the model will **infer** (e.g., whether `C1`, `C2`, `C3` are `Minimal`).\n"
"- **Truth** (if provided) is held-out gold used to **evaluate** performance (not used during inference).\n"
"_Note: the same ground atom must not appear in both Observations and Targets._"
)
# =========================
# Learning + Inference + UI tab
# =========================
def get_rules_and_weights(model):
"""
Returns a dict: textual rule body -> weight (float).
Uses pslpython internals (_rules, _weight, _rule_body) as in your snippet.
"""
rules = model._rules
return {r._rule_body: r._weight for r in rules}
# 1) Capture starting weights
start_rules_to_weights = get_rules_and_weights(model)
# 2) Learn weights (supervised), then infer
# Note: learning expects some TRUTH atoms (you provided e.g., Minimal(C3), Sufficient, etc.)
model.learn(psl_options=ADDITIONAL_PSL_OPTIONS)
results = model.infer(psl_options=ADDITIONAL_PSL_OPTIONS)
# 3) Package results
# results is a dict-like {Predicate -> DataFrame}, or iterable of (Predicate, DataFrame)
# Build a name->df map similar to your snippet.
named_results = {}
for pred_obj, df in results.items():
# pslpython usually has .name or .name() depending on version
name = pred_obj.name() if hasattr(pred_obj, "name") and callable(pred_obj.name) else getattr(pred_obj, "name", str(pred_obj))
named_results[str(name).upper()] = df
# Minimal(C) inferred scores
minimal_results = named_results.get("MINIMAL", pd.DataFrame())
# Make Minimal table tidy: columns [C, VALUE]
if not minimal_results.empty:
cols = list(minimal_results.columns)
minimal_results_display = minimal_results[[0, "truth"]].sort_values(0).reset_index(drop=True)
minimal_results_display = minimal_results_display.rename(columns={"truth": "VALUE", "O": "Circuit_ID"})
else:
minimal_results_display = pd.DataFrame(columns=["C", "VALUE"])
# 4) Capture ending weights and build comparison
end_rules_to_weights = get_rules_and_weights(model)
def weights_comparison_df(start_w: dict, end_w: dict) -> pd.DataFrame:
# Join on rule body text; include rules that exist at either time
keys = sorted(set(start_w.keys()) | set(end_w.keys()))
rows = []
for k in keys:
sw = start_w.get(k, float("nan"))
ew = end_w.get(k, float("nan"))
rows.append({"Rule": k, "StartWeight": sw, "EndWeight": ew, "Delta": (ew - sw) if (pd.notna(sw) and pd.notna(ew)) else float("nan")})
df = pd.DataFrame(rows)
# Sort: biggest magnitude changes first
return df.sort_values("Delta", key=lambda s: s.abs(), ascending=False).reset_index(drop=True)
WEIGHTS_TABLE = weights_comparison_df(start_rules_to_weights, end_rules_to_weights)
# --- Add to the static Gradio app (below your existing panes) ---
# -------------------------
# Static Gradio UI
# -------------------------
# --- Static Gradio UI with Tabs ---
with gr.Blocks(title="PSL Minimal-Circuit β’ Static") as demo:
gr.Markdown("## PSL Minimal-Circuit β’ Static Overview")
with gr.Tabs():
with gr.Tab("Rules & Model"):
# gr.Markdown(f"**JVM status:**\n\n{JVM_STATUS}")
gr.Markdown(COMMENTARY_MD)
gr.Markdown(MODEL_SUMMARY_MD)
with gr.Tab("Dependency graph"):
gr.Image(value=GRAPH_PATH, label="Rule Graph (green = positive head, red dashed = negated head)", show_label=False)
with gr.Tab("Atoms"):
ATOMS_COMMENTARY = (
"### Facts/Atoms Overview\n"
"- **Observations** are known inputs (fixed evidence).\n"
"- **Targets** are latent atoms the model will **infer** "
"(e.g., whether `C1`, `C2`, `C3` are `Minimal`).\n"
"- **Truth** (if provided) is held-out gold used to **evaluate** performance; "
"it is not used during inference.\n"
"_Note: the same ground atom must not appear in both Observations and Targets._"
)
gr.Markdown(ATOMS_COMMENTARY)
# compact counts table: rows=predicate, cols=Observations/Targets/Truth
def _atoms_summary_table(atoms=ATOMS):
def fmt_atoms(pname, df):
if df is None or len(df) == 0:
return ""
var_cols = [c for c in df.columns if c != "VALUE"]
lines = []
for _, r in df.iterrows():
args = ", ".join(str(r[c]) for c in var_cols)
val = r["VALUE"] if "VALUE" in df.columns else ""
lines.append(f"{pname}({args}) = {val}")
return "\n".join(lines)
rows = []
for pname, parts in atoms.items():
rows.append({
"Predicate": pname,
"Observations": fmt_atoms(pname, parts.get("OBS", pd.DataFrame())),
"Targets": fmt_atoms(pname, parts.get("TARGETS", pd.DataFrame())),
"Truth": fmt_atoms(pname, parts.get("TRUTH", pd.DataFrame())),
})
return pd.DataFrame(rows)
gr.Dataframe(
value=_atoms_summary_table(ATOMS),
label="Atoms Summary (counts)",
interactive=False
)
with gr.Tab("Learning & Inference"):
gr.Markdown("### Training & Inference Results")
gr.Markdown(
"Below are the **inferred minimality scores** for each circuit `C`, "
"and a comparison of **rule weights** before and after `model.learn()`."
)
gr.Markdown("#### Inferred Minimality: `Minimal(C)`")
gr.Dataframe(value=minimal_results_display, interactive=False)
gr.Markdown("#### Rule Weights (Before vs After Learning)")
gr.Dataframe(value=WEIGHTS_TABLE, interactive=False)
gr.Markdown(
"_Notes:_ Learning adjusts **soft rule** weights to better explain the provided TRUTH. "
"Hard constraints remain fixed. Inference then computes truth values in `[0,1]` for target atoms."
)
if __name__ == "__main__":
demo.launch()
|