Spaces:
Runtime error
Runtime error
| import os | |
| import pdfplumber | |
| import re | |
| import gradio as gr | |
| from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer | |
| from io import BytesIO | |
| import torch | |
| """ | |
| Extract the text from a section of a PDF file between 'wanted_section' and 'next_section'. | |
| Parameters: | |
| - path (str): The file path to the PDF file. | |
| - wanted_section (str): The section to start extracting text from. | |
| - next_section (str): The section to stop extracting text at. | |
| Returns: | |
| - text (str): The extracted text from the specified section range. | |
| """ | |
| def get_section(path, wanted_section, next_section): | |
| print(wanted_section) | |
| # Open the PDF file | |
| doc = pdfplumber.open(BytesIO(path)) | |
| start_page = [] | |
| end_page = [] | |
| # Find the all the pages for the specified sections | |
| for page in range(len(doc.pages)): | |
| if len(doc.pages[page].search(wanted_section, return_chars=False, case=False)) > 0: | |
| start_page.append(page) | |
| if len(doc.pages[page].search(next_section, return_chars=False, case=False)) > 0: | |
| end_page.append(page) | |
| # Extract the text between the start and end page of the wanted section | |
| text = [] | |
| for page_num in range(max(start_page), max(end_page)+1): | |
| page = doc.pages[page_num] | |
| text.append(page.extract_text()) | |
| text = " ".join(text) | |
| final_text = text.replace("\n", " ") | |
| return final_text | |
| def extract_between(big_string, start_string, end_string): | |
| # Use a non-greedy match for content between start_string and end_string | |
| pattern = re.escape(start_string) + '(.*?)' + re.escape(end_string) | |
| match = re.search(pattern, big_string, re.DOTALL) | |
| if match: | |
| # Return the content without the start and end strings | |
| return match.group(1) | |
| else: | |
| # Return None if the pattern is not found | |
| return None | |
| def format_section1(section1_text): | |
| result_section1_dict = {} | |
| result_section1_dict['TOPIC'] = extract_between(section1_text, "Sektor", "EZ-Programm") | |
| result_section1_dict['PROGRAM'] = extract_between(section1_text, "Sektor", "EZ-Programm") | |
| result_section1_dict['PROJECT DESCRIPTION'] = extract_between(section1_text, "EZ-Programmziel", "Datum der letzten BE") | |
| result_section1_dict['PROJECT NAME'] = extract_between(section1_text, "Modul", "Modulziel") | |
| result_section1_dict['OBJECTIVE'] = extract_between(section1_text, "Modulziel", "Berichtszeitraum") | |
| result_section1_dict['PROGRESS'] = extract_between(section1_text, "Zielerreichung des Moduls", "Massnahme im Zeitplan") | |
| result_section1_dict['STATUS'] = extract_between(section1_text, "Massnahme im Zeitplan", "Risikoeinschätzung") | |
| result_section1_dict['RECOMMENDATIONS'] = extract_between(section1_text, "Vorschläge zur Modulanpas-", "Voraussichtliche") | |
| return result_section1_dict | |
| def answer_questions(text,language="de"): | |
| # Initialize the zero-shot classification pipeline | |
| model_name = "deepset/gelectra-large-germanquad" | |
| model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Initialize the QA pipeline | |
| qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer) | |
| questions = [ | |
| "Welches ist das Titel des Moduls?", | |
| "Welches ist das Sektor oder das Kernthema?", | |
| "Welches ist das Land?", | |
| "Zu welchem Program oder EZ-Programm gehort das Projekt?" | |
| #"Welche Durchführungsorganisation aus den 4 Varianten 'giz', 'kfw', 'ptb' und 'bgr' implementiert das Projekt?" | |
| # "In dem Dokument was steht bei Sektor?", | |
| # "In dem Dokument was steht von 'EZ-Programm' bis 'EZ-Programmziel'?", | |
| # "In dem Dokument was steht bei EZ-Programmziel?", | |
| # "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Modul?", | |
| # "In dem Dokument was steht bei Zielerreichung des Moduls?", | |
| # "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Maßnahme im Zeitplan?", | |
| # "In dem Dokument was steht bei Vorschläge zur Modulanpassung?", | |
| # "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als erstes Datum?", | |
| # "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als zweites Datum?" | |
| ] | |
| # Iterate over each question and get answers | |
| answers_dict = {} | |
| for question in questions: | |
| result = qa_pipeline(question=question, context=text) | |
| # print(f"Question: {question}") | |
| # print(f"Answer: {result['answer']}\n") | |
| answers_dict[question] = result['answer'] | |
| return answers_dict | |
| def process_pdf(path): | |
| results_dict = {} | |
| results_dict["1. Kurzbeschreibung"] = \ | |
| get_section(path, "1. Kurzbeschreibung", "2. Einordnung des Moduls") | |
| answers = answer_questions(results_dict["1. Kurzbeschreibung"]) | |
| return answers | |
| def get_first_page_text(file_data): | |
| doc = pdfplumber.open(BytesIO(file_data)) | |
| if len(doc.pages): | |
| return doc.pages[0].extract_text() | |
| if __name__ == "__main__": | |
| # Define the Gradio interface | |
| # iface = gr.Interface(fn=process_pdf, | |
| demo = gr.Interface(fn=process_pdf, | |
| inputs=gr.File(type="binary", label="Upload PDF"), | |
| outputs=gr.Textbox(label="Extracted Text"), | |
| title="PDF Text Extractor", | |
| description="Upload a PDF file to extract.") | |
| demo.launch() | |