Update app.py
Browse files
app.py
CHANGED
|
@@ -15,6 +15,7 @@ import whisper
|
|
| 15 |
|
| 16 |
YT_AUDIO_FORMAT = "bestaudio[ext=m4a]"
|
| 17 |
|
|
|
|
| 18 |
MODEL_SIZES = ["tiny", "base", "small", "medium", "large", "turbo"]
|
| 19 |
for size in MODEL_SIZES:
|
| 20 |
whisper.load_model(size, device="cpu")
|
|
@@ -73,6 +74,9 @@ def transcribe_audio(
|
|
| 73 |
youtube_url: str,
|
| 74 |
return_timestamps: bool,
|
| 75 |
temperature: float,
|
|
|
|
|
|
|
|
|
|
| 76 |
):
|
| 77 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 78 |
results = []
|
|
@@ -84,6 +88,9 @@ def transcribe_audio(
|
|
| 84 |
word_timestamps=return_timestamps,
|
| 85 |
temperature=temperature,
|
| 86 |
verbose=False,
|
|
|
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
text = out["text"].strip()
|
| 89 |
segments = out["segments"] if return_timestamps else []
|
|
@@ -129,6 +136,28 @@ def build_demo() -> gr.Blocks:
|
|
| 129 |
step=0.01,
|
| 130 |
)
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
audio_input = gr.Audio(
|
| 133 |
label="Upload or record audio",
|
| 134 |
sources=["upload"],
|
|
@@ -151,7 +180,16 @@ def build_demo() -> gr.Blocks:
|
|
| 151 |
|
| 152 |
transcribe_btn.click(
|
| 153 |
transcribe_audio,
|
| 154 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
outputs=[out_table],
|
| 156 |
)
|
| 157 |
|
|
|
|
| 15 |
|
| 16 |
YT_AUDIO_FORMAT = "bestaudio[ext=m4a]"
|
| 17 |
|
| 18 |
+
|
| 19 |
MODEL_SIZES = ["tiny", "base", "small", "medium", "large", "turbo"]
|
| 20 |
for size in MODEL_SIZES:
|
| 21 |
whisper.load_model(size, device="cpu")
|
|
|
|
| 74 |
youtube_url: str,
|
| 75 |
return_timestamps: bool,
|
| 76 |
temperature: float,
|
| 77 |
+
logprob_threshold: float = -1.0,
|
| 78 |
+
no_speech_threshold: float = 0.6,
|
| 79 |
+
compression_ratio_threshold: float = 2.4,
|
| 80 |
):
|
| 81 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 82 |
results = []
|
|
|
|
| 88 |
word_timestamps=return_timestamps,
|
| 89 |
temperature=temperature,
|
| 90 |
verbose=False,
|
| 91 |
+
logprob_threshold=logprob_threshold,
|
| 92 |
+
no_speech_threshold=no_speech_threshold,
|
| 93 |
+
compression_ratio_threshold=compression_ratio_threshold,
|
| 94 |
)
|
| 95 |
text = out["text"].strip()
|
| 96 |
segments = out["segments"] if return_timestamps else []
|
|
|
|
| 136 |
step=0.01,
|
| 137 |
)
|
| 138 |
|
| 139 |
+
logprob_slider = gr.Slider(
|
| 140 |
+
label="Average log-probability threshold",
|
| 141 |
+
minimum=-10.0,
|
| 142 |
+
maximum=0.0,
|
| 143 |
+
value=-1.0,
|
| 144 |
+
step=0.1,
|
| 145 |
+
)
|
| 146 |
+
no_speech_slider = gr.Slider(
|
| 147 |
+
label="No-speech probability threshold",
|
| 148 |
+
minimum=0.0,
|
| 149 |
+
maximum=1.0,
|
| 150 |
+
value=0.6,
|
| 151 |
+
step=0.01,
|
| 152 |
+
)
|
| 153 |
+
compression_slider = gr.Slider(
|
| 154 |
+
label="Compression ratio threshold",
|
| 155 |
+
minimum=1.0,
|
| 156 |
+
maximum=5.0,
|
| 157 |
+
value=2.4,
|
| 158 |
+
step=0.1,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
audio_input = gr.Audio(
|
| 162 |
label="Upload or record audio",
|
| 163 |
sources=["upload"],
|
|
|
|
| 180 |
|
| 181 |
transcribe_btn.click(
|
| 182 |
transcribe_audio,
|
| 183 |
+
inputs=[
|
| 184 |
+
model_choices,
|
| 185 |
+
audio_input,
|
| 186 |
+
yt_input,
|
| 187 |
+
ts_checkbox,
|
| 188 |
+
temp_slider,
|
| 189 |
+
logprob_slider,
|
| 190 |
+
no_speech_slider,
|
| 191 |
+
compression_slider,
|
| 192 |
+
],
|
| 193 |
outputs=[out_table],
|
| 194 |
)
|
| 195 |
|