Spaces:
Sleeping
Sleeping
File size: 13,842 Bytes
7a56e2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
# https://stackoverflow.com/questions/76175046/how-to-add-prompt-to-langchain-conversationalretrievalchain-chat-over-docs-with
# again from:
# https://python.langchain.com/docs/integrations/providers/vectara/vectara_chat
from langchain.document_loaders import PyPDFDirectoryLoader
import pandas as pd
import langchain
from queue import Queue
from typing import Any
from langchain.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import LLMResult
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.prompts.prompt import PromptTemplate
from anyio.from_thread import start_blocking_portal #For model callback streaming
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
import os
from dotenv import load_dotenv
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Chroma
import chromadb
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
from langchain_community.document_loaders import PyMuPDFLoader
from langchain.schema import Document
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.conversational_retrieval.prompts import QA_PROMPT
import gradio as gr
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
persist_directory = '/projects/bcjp/marshad/agllm/db5'
csv_filepath1 = "./agllm-data/corrected/Corrected_supplemented-insect_data-2500-sorted.xlsx"
csv_filepath2 = "./agllm-data/corrected/Corrected_supplemented-insect_data-remaining.xlsx"
model_name=4
max_tokens=400
system_message = {"role": "system", "content": "You are a helpful assistant."} # TODO: double check how this plays out later.
langchain.debug=True # TODO: DOUBLE CHECK
retriever_k_value=2
embedding = OpenAIEmbeddings()
######### todo: skipping the first step
embedding = OpenAIEmbeddings()
vectordb = Chroma(persist_directory=persist_directory,
embedding_function=embedding)
retriever = vectordb.as_retriever()
print(# Single example
vectordb.as_retriever(k=2, search_kwargs={"filter": {"matched_specie_0": "Hypagyrtis unipunctata"}, 'k':1}).get_relevant_documents(
"Checking if retriever is correctly initalized?"
))
columns = ['species', 'common name', 'order', 'family',
'genus', 'Updated role in ecosystem', 'Proof',
'ipm strategies', 'size of insect', 'geographical spread',
'life cycle specifics', 'pest for plant species', 'species status',
'distribution area', 'appearance', 'identification']
df1 = pd.read_excel(csv_filepath1, usecols=columns)
df2 = pd.read_excel(csv_filepath2, usecols=columns)
all_insects_data = pd.concat([df1, df2], ignore_index=True)
def get_prompt_with_vetted_info_from_specie_name(search_for_specie, mode):
def read_and_format_filtered_csv_better(insect_specie):
filtered_data = all_insects_data[all_insects_data['species'] == insect_specie]
formatted_data = ""
# Format the filtered data
for index, row in filtered_data.iterrows():
row_data = [f"{col}: {row[col]}" for col in filtered_data.columns]
formatted_row = "\n".join(row_data)
formatted_data += f"{formatted_row}\n"
return formatted_data
# Use the path to your CSV file here
vetted_info=read_and_format_filtered_csv_better(search_for_specie)
if mode=="user":
language_constraint="The language should be acustomed to the end user. This question is likely asked by a farmer. So, answer things in their language. Bur for referencing information, you can use the original content. This is only for the main answer to be provided by you."
elif mode=="researcher":
language_constraint="The language should be acustomed to a researcher. This question is likely asked by an academic researcher. So you can use all the technical terms freely. And for referencing information, you can use the original content. This is only for the main answer to be provided by you."
else:
print("No valid model provided. Exiting")
exit()
general_system_template = """
In every question you are provided information about the insect. Two types of information are: First, Vetted Information (which is same in every questinon) and Second, some context from external documents about an insect specie and a question by the user. answer the question according to these two types of informations.
----
Vetted info is as follows:
{vetted_info}
----
The context retrieved for documents about this particular question is a as follows:
{context}
----
Additional Instruction:
1. Reference Constraint
At the end of each answer provide the source/reference for the given data in following format:
\n\n[enter two new lines before writing below] References:
Vetted Information Used: Write what was used from the document for coming up with the answer above. Write exact part of lines. If nothing, write 'Nothing'.
Documents Used: Write what was used from the document for coming up with the answer above. If nothing, write 'Nothing'. Write exact part of lines and document used.
2. Information Constraint:
Only answer the question from information provided otherwise say you dont know. You have to answer in 150 words including references. Prioritize information in documents/context over vetted information. And first mention the warnings/things to be careful about.
3. Language constraint:
{language_constraint}
----
""".format(vetted_info=vetted_info, language_constraint=language_constraint,context="{context}", )
general_user_template = "Question:```{question}```"
messages_formatted = [
SystemMessagePromptTemplate.from_template(general_system_template),
# HumanMessagePromptTemplate.from_template(general_system_template),
HumanMessagePromptTemplate.from_template(general_user_template)
]
qa_prompt = ChatPromptTemplate.from_messages( messages_formatted )
print(qa_prompt)
return qa_prompt
qa_prompt=get_prompt_with_vetted_info_from_specie_name("Papaipema nebris", "researcher")
print("First prompt is intialized as: " , qa_prompt, "\n\n")
memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer', return_messages=True) # https://github.com/langchain-ai/langchain/issues/9394#issuecomment-1683538834
if model_name==4:
llm_openai = ChatOpenAI(model_name="gpt-4-1106-preview" , temperature=0, max_tokens=max_tokens) # TODO: NEW MODEL VERSION AVAILABLE
else:
llm_openai = ChatOpenAI(model_name="gpt-3.5-turbo-0125" , temperature=0, max_tokens=max_tokens)
specie_selector="Papaipema nebris"
filter = {
"$or": [
{"matched_specie_0": specie_selector},
{"matched_specie_1": specie_selector},
{"matched_specie_2": specie_selector},
]
}
retriever = vectordb.as_retriever(search_kwargs={'k':retriever_k_value, 'filter': filter})
qa_chain = ConversationalRetrievalChain.from_llm(
llm_openai, retriever, memory=memory, verbose=False, return_source_documents=True,\
combine_docs_chain_kwargs={'prompt': qa_prompt}
)
#
def initialize_qa_chain(specie_selector, application_mode):
filter = {
"$or": [
{"matched_specie_0": specie_selector},
{"matched_specie_1": specie_selector},
{"matched_specie_2": specie_selector},
]
}
retriever = vectordb.as_retriever(search_kwargs={'k':2, 'filter': filter})
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
qa_prompt=get_prompt_with_vetted_info_from_specie_name(specie_selector, application_mode)
qa_chain = ConversationalRetrievalChain.from_llm(
llm_openai, retriever, memory=memory, verbose=False, return_source_documents=True,
combine_docs_chain_kwargs={'prompt': qa_prompt}
)
return qa_chain
result = qa_chain.invoke({"question": "where are stalk borer eggs laid?"})
print("Got the first LLM task working: ", result)
#Application Interface:
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""

"""
)
with gr.Column(scale=1):
gr.Markdown(
"""

"""
)
# Configure UI layout
chatbot = gr.Chatbot(height=600, label="AgLLM22")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
# Model selection
specie_selector = gr.Dropdown(
list(["Papaipema nebris", "Nomophila nearctica"]),
value="Papaipema nebris",
label="Species",
info="Select the Species",
interactive=True,
scale=2,
visible=True
)
with gr.Row():
application_mode = gr.Dropdown(
list(["user", "researcher"]),
value="researcher",
label="Mode",
info="Select the Mode",
interactive=True,
scale=2,
visible=True
)
with gr.Row():
pass
with gr.Column(scale=2):
# User input prompt text field
user_prompt_message = gr.Textbox(placeholder="Please add user prompt here", label="User prompt")
with gr.Row():
# clear = gr.Button("Clear Conversation", scale=2)
submitBtn = gr.Button("Submit", scale=8)
state = gr.State([])
qa_chain_state = gr.State(value=None)
# Handle user message
def user(user_prompt_message, history):
print("HISTORY IS: ", history) # TODO: REMOVE IT LATER
if user_prompt_message != "":
return history + [[user_prompt_message, None]]
else:
return history + [["Invalid prompts - user prompt cannot be empty", None]]
# Chatbot logic for configuration, sending the prompts, rendering the streamed back generations, etc.
def bot(application_mode, user_prompt_message, history, messages_history, qa_chain):
if qa_chain == None:
qa_chain=init_qa_chain("Papaipema nebris", application_mode)
dialog = []
bot_message = ""
history[-1][1] = "" # Placeholder for the answer
dialog = [
{"role": "user", "content": user_prompt_message},
]
messages_history += dialog
# Queue for streamed character rendering
q = Queue()
# Async task for streamed chain results wired to callbacks we previously defined, so we don't block the UI
def task(user_prompt_message):
ret = qa_chain.invoke({"question": user_prompt_message})["answer"]
return ret
history[-1][1] = task(user_prompt_message)
return [history, messages_history]
# Initialize the chat history with default system message
def init_history(messages_history):
messages_history = []
messages_history += [system_message]
return messages_history
# Clean up the user input text field
def input_cleanup():
return ""
def init_qa_chain(specie_selector, application_mode):
qa_chain = initialize_qa_chain(specie_selector, application_mode)
return qa_chain
specie_selector.change(
init_qa_chain,
inputs=[specie_selector, application_mode],
outputs=[qa_chain_state]
)
# When the user clicks Enter and the user message is submitted
user_prompt_message.submit(
user,
[user_prompt_message, chatbot],
[chatbot],
queue=False
).then(
bot,
[application_mode, user_prompt_message, chatbot, state, qa_chain_state],
[chatbot, state]
).then(input_cleanup,
[],
[user_prompt_message],
queue=False
)
# When the user clicks the submit button
submitBtn.click(
user,
[user_prompt_message, chatbot],
[chatbot],
queue=False
).then(
bot,
[application_mode, user_prompt_message, chatbot, state, qa_chain_state],
[chatbot, state]
).then(
input_cleanup,
[],
[user_prompt_message],
queue=False
)
# When the user clicks the clear button
# clear.click(lambda: None, None, chatbot, queue=False).success(init_history, [state], [state])
if __name__ == "__main__":
# demo.launch()
demo.queue().launch(allowed_paths=["/"], server_name="0.0.0.0", share=True, debug=True) |