agllm2-dev / app_backup.py
arbabarshad's picture
Add remaining files from agllm-development state
7a56e2a
import os
# https://stackoverflow.com/questions/76175046/how-to-add-prompt-to-langchain-conversationalretrievalchain-chat-over-docs-with
# again from:
# https://python.langchain.com/docs/integrations/providers/vectara/vectara_chat
from langchain.document_loaders import PyPDFDirectoryLoader
import pandas as pd
import langchain
from queue import Queue
from typing import Any
from langchain.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import LLMResult
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.prompts.prompt import PromptTemplate
from anyio.from_thread import start_blocking_portal #For model callback streaming
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
import os
from dotenv import load_dotenv
import streamlit as st
import json
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatOpenAI
# from langchain.chat_models import ChatAnthropic
from langchain_anthropic import ChatAnthropic
from langchain.vectorstores import Chroma
import chromadb
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
from langchain_community.document_loaders import PyMuPDFLoader
from langchain.schema import Document
from langchain.memory import ConversationBufferMemory
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.conversational_retrieval.prompts import QA_PROMPT
import gradio as gr
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
print("Started")
def get_species_list_from_db(db_name):
embedding = OpenAIEmbeddings()
vectordb_temp = Chroma(persist_directory=db_name,
embedding_function=embedding)
species_list=[]
for meta in vectordb_temp.get()["metadatas"] :
try:
matched_first_species = meta['matched_specie_0']
except KeyError:
continue
# Since each document is considered as a single chunk, the chunk_index is 0 for all
species_list.append( matched_first_species)
return species_list
# default_persist_directory = './db5' # For deployement
default_persist_directory_insects='./vector-databases-deployed/db5-agllm-data-isu-field-insects-all-species'
default_persist_directory_weeds='./vector-databases-deployed/db5-agllm-data-isu-field-weeds-all-species'
species_list_insects=get_species_list_from_db(default_persist_directory_insects)
species_list_weeds=get_species_list_from_db(default_persist_directory_weeds)
# default_persist_directory = 'vector-databases/db5-pre-completion' # For Development
csv_filepath1 = "./agllm-data/corrected/Corrected_supplemented-insect_data-2500-sorted.xlsx"
csv_filepath2 = "./agllm-data/corrected/Corrected_supplemented-insect_data-remaining.xlsx"
model_name=4
max_tokens=400
system_message = {"role": "system", "content": "You are a helpful assistant."} # TODO: double check how this plays out later.
langchain.debug=False # TODO: DOUBLE CHECK
from langchain import globals
globals.set_debug(False)
retriever_k_value=3
embedding = OpenAIEmbeddings()
print("Started....")
class ChatOpenRouter(ChatOpenAI):
openai_api_base: str
openai_api_key: str
model_name: str
def __init__(self,
model_name: str,
openai_api_key: [str] = None,
openai_api_base: str = "https://openrouter.ai/api/v1",
**kwargs):
openai_api_key = openai_api_key or os.getenv('OPENROUTER_API_KEY')
super().__init__(openai_api_base=openai_api_base,
openai_api_key=openai_api_key,
model_name=model_name, **kwargs)
######### todo: skipping the first step
# print(# Single example
# vectordb.as_retriever(k=2, search_kwargs={"filter": {"matched_specie_0": "Hypagyrtis unipunctata"}, 'k':1}).get_relevant_documents(
# "Checking if retriever is correctly initalized?"
# ))
columns = ['species', 'common name', 'order', 'family',
'genus', 'Updated role in ecosystem', 'Proof',
'ipm strategies', 'size of insect', 'geographical spread',
'life cycle specifics', 'pest for plant species', 'species status',
'distribution area', 'appearance', 'identification']
df1 = pd.read_excel(csv_filepath1, usecols=columns)
df2 = pd.read_excel(csv_filepath2, usecols=columns)
all_insects_data = pd.concat([df1, df2], ignore_index=True)
def get_prompt_with_vetted_info_from_specie_name(search_for_specie, mode):
def read_and_format_filtered_csv_better(insect_specie):
filtered_data = all_insects_data[all_insects_data['species'] == insect_specie]
formatted_data = ""
# Format the filtered data
for index, row in filtered_data.iterrows():
row_data = [f"{col}: {row[col]}" for col in filtered_data.columns]
formatted_row = "\n".join(row_data)
formatted_data += f"{formatted_row}\n"
return formatted_data
# Use the path to your CSV file here
vetted_info=read_and_format_filtered_csv_better(search_for_specie)
if mode=="Farmer":
language_constraint="The language should be acustomed to the Farmers. Given question is likely to be asked by a farmer in the field will ask which will help to make decisions which are immediate and practical."
elif mode=="Researcher":
language_constraint="The language should be acustomed to a researcher. Given question is likely to be asked by a scientist which are comprehensive and aimed at exploring new knowledge or refining existing methodologies"
else:
print("No valid mode provided. Exiting")
exit()
# general_system_template = """
# In every question you are provided information about the insect/weed. Two types of information are: First, Vetted Information (which is same in every questinon) and Second, some context from external documents about an insect/weed species and a question by the user. answer the question according to these two types of informations.
# ----
# Vetted info is as follows:
# {vetted_info}
# ----
# The context retrieved for documents about this particular question is as follows:
# {context}
# ----
# Additional Instruction:
# 1. Reference Constraint
# At the end of each answer provide the source/reference for the given data in following format:
# \n\n[enter two new lines before writing below] References:
# Vetted Information Used: Write what was used from the document for coming up with the answer above. Write exact part of lines. If nothing, write 'Nothing'.
# Documents Used: Write what was used from the document for coming up with the answer above. If nothing, write 'Nothing'. Write exact part of lines and document used.
# 2. Information Constraint:
# Only answer the question from information provided otherwise say you dont know. You have to answer in 50 words including references. Prioritize information in documents/context over vetted information. And first mention the warnings/things to be careful about.
# 3. Language constraint:
# {language_constraint}
# ----
# """.format(vetted_info=vetted_info, language_constraint=language_constraint,context="{context}", )
general_system_template = f"""
You are an AI assistant specialized in providing information about insects/weeds. Answer the user's question based on the available information or your general knowledge.
The context retrieved for this question is as follows:
{{context}}
Instructions:
1. Evaluate the relevance of the provided context to the question.
2. If the context contains relevant information, use it to answer the question.
3. If the context does not contain relevant information, use your general knowledge to answer the question.
4. Format your response as follows:
Answer: Provide a concise answer in less than 50 words.
Reference: If you used the provided context, cite the specific information used. If you used your general knowledge, state "Based on general knowledge".
5. Language constraint:
{language_constraint}
Question: {{question}}
"""
general_user_template = "Question:```{question}```"
messages_formatted = [
SystemMessagePromptTemplate.from_template(general_system_template),
HumanMessagePromptTemplate.from_template(general_user_template)
]
qa_prompt = ChatPromptTemplate.from_messages( messages_formatted )
# print(qa_prompt)
return qa_prompt
qa_prompt=get_prompt_with_vetted_info_from_specie_name("Papaipema nebris", "Researcher")
# print("First prompt is intialized as: " , qa_prompt, "\n\n")
memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer', return_messages=True) # https://github.com/langchain-ai/langchain/issues/9394#issuecomment-1683538834
if model_name==4:
llm_openai = ChatOpenAI(model_name="gpt-4-1106-preview" , temperature=0, max_tokens=max_tokens) # TODO: NEW MODEL VERSION AVAILABLE
else:
llm_openai = ChatOpenAI(model_name="gpt-3.5-turbo-0125" , temperature=0, max_tokens=max_tokens)
specie_selector="Papaipema nebris"
filter = {
"$or": [
{"matched_specie_0": specie_selector},
{"matched_specie_1": specie_selector},
{"matched_specie_2": specie_selector},
]
}
# retriever = vectordb.as_retriever(search_kwargs={'k':retriever_k_value, 'filter': filter})
# qa_chain = ConversationalRetrievalChain.from_llm(
# llm_openai, retriever, memory=memory, verbose=False, return_source_documents=True,\
# combine_docs_chain_kwargs={'prompt': qa_prompt}
# )
#
def initialize_qa_chain(specie_selector, application_mode, model_name="GPT-4", database_persistent_directory=default_persist_directory_insects):
if model_name=="GPT-4":
chosen_llm=ChatOpenAI(model_name="gpt-4-1106-preview" , temperature=0, max_tokens=max_tokens)
elif model_name=="GPT-3.5":
chosen_llm=ChatOpenAI(model_name="gpt-3.5-turbo-0125" , temperature=0, max_tokens=max_tokens)
elif model_name=="Llama-3 70B":
chosen_llm = ChatOpenRouter(model_name="meta-llama/llama-3-70b-instruct", temperature=0,max_tokens=max_tokens )
elif model_name=="Llama-3 8B":
chosen_llm = ChatOpenRouter(model_name="meta-llama/llama-3-8b-instruct", temperature=0, max_tokens=max_tokens)
elif model_name=="Gemini-1.5 Pro":
chosen_llm = ChatOpenRouter(model_name="google/gemini-pro-1.5", temperature=0, max_tokens=max_tokens)
elif model_name=="Claude 3 Opus":
chosen_llm = ChatAnthropic(model_name='claude-3-opus-20240229', temperature=0, max_tokens=max_tokens)
else:
print("No appropriate llm was selected")
exit()
filter = {
"$or": [
{"matched_specie_0": specie_selector},
{"matched_specie_1": specie_selector},
{"matched_specie_2": specie_selector},
{"matched_specie_3": specie_selector},
{"matched_specie_4": specie_selector},
{"matched_specie_5": specie_selector},
{"matched_specie_6": specie_selector},
{"matched_specie_7": specie_selector},
{"matched_specie_8": specie_selector},
{"matched_specie_9": specie_selector},
{"matched_specie_10": specie_selector}
]
}
embedding = OpenAIEmbeddings()
vectordb = Chroma(persist_directory=database_persistent_directory,
embedding_function=embedding)
print("got updated retriever without metadata filtering")
retriever = vectordb.as_retriever(search_kwargs={'k':retriever_k_value, 'filter': filter})
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
qa_prompt=get_prompt_with_vetted_info_from_specie_name(specie_selector, application_mode)
qa_chain = ConversationalRetrievalChain.from_llm(
chosen_llm, retriever, memory=memory, verbose=False, return_source_documents=True,
combine_docs_chain_kwargs={'prompt': qa_prompt}
)
return qa_chain
# result = qa_chain.invoke({"question": "where are stalk borer eggs laid?"})
# print("Got the first LLM task working: ", result)
#Application Interface:
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
![Logo](file/logo1.png)
"""
)
with gr.Column(scale=1):
gr.Markdown(
"""
![Logo](file/logo2.png)
"""
)
# Configure UI layout
chatbot = gr.Chatbot(height=600, label="AgLLM")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
domain_name = gr.Dropdown(
list(["Insects", "Weeds"]),
value="Insects",
label="Domain",
info="Select Domain",
interactive=True,
scale=1,
visible=True
)
# Model selection
specie_selector = gr.Dropdown(
species_list_insects,
value=species_list_insects[0],
label="Species",
info="Select the Species",
interactive=True,
scale=1,
visible=True
)
with gr.Row():
model_name = gr.Dropdown(
list(["GPT-4", "GPT-3.5", "Llama-3 70B", "Llama-3 8B", "Gemini-1.5 Pro", "Claude 3 Opus"]),
value="Llama-3 70B",
label="LLM",
info="Select the LLM",
interactive=True,
scale=1,
visible=True
)
application_mode = gr.Dropdown(
list(["Farmer", "Researcher"]),
value="Researcher",
label="Mode",
info="Select the Mode",
interactive=True,
scale=1,
visible=True
)
with gr.Column(scale=2):
# User input prompt text field
user_prompt_message = gr.Textbox(placeholder="Please add user prompt here", label="User prompt")
with gr.Row():
# clear = gr.Button("Clear Conversation", scale=2)
submitBtn = gr.Button("Submit", scale=8)
state = gr.State([])
qa_chain_state = gr.State(value=None)
# Handle user message
def user(user_prompt_message, history):
# print("HISTORY IS: ", history) # TODO: REMOVE IT LATER
if user_prompt_message != "":
return history + [[user_prompt_message, None]]
else:
return history + [["Invalid prompts - user prompt cannot be empty", None]]
# Chatbot logic for configuration, sending the prompts, rendering the streamed back generations, etc.
def bot(model_name, application_mode, user_prompt_message, history, messages_history, qa_chain, domain_name):
if qa_chain == None:
qa_chain=init_qa_chain(species_list_insects[0], application_mode, model_name, domain_name)
dialog = []
bot_message = ""
history[-1][1] = "" # Placeholder for the answer
dialog = [
{"role": "user", "content": user_prompt_message},
]
messages_history += dialog
# Queue for streamed character rendering
q = Queue()
# Async task for streamed chain results wired to callbacks we previously defined, so we don't block the UI
def task(user_prompt_message):
result = qa_chain.invoke({"question": user_prompt_message})
answer = result["answer"]
try:
answer_start = answer.find("Answer:")
reference_start = answer.find("Reference:")
if answer_start != -1 and reference_start != -1:
model_answer = answer[answer_start + len("Answer:"):reference_start].strip()
reference = answer[reference_start + len("Reference:"):].strip()
formatted_response = f"Answer:\n{model_answer}\n\nReferences:\n{reference}"
else:
formatted_response = answer
except:
print(f"Error parsing so displaying the raw output")
formatted_response = answer
return formatted_response
history[-1][1] = task(user_prompt_message)
return [history, messages_history]
# Initialize the chat history with default system message
def init_history(messages_history):
messages_history = []
messages_history += [system_message]
return messages_history
# Clean up the user input text field
def input_cleanup():
return ""
def init_qa_chain(specie_selector, application_mode, model_name, domain_name):
if domain_name=="Insects":
qa_chain = initialize_qa_chain(specie_selector, application_mode, model_name, default_persist_directory_insects)
elif domain_name=="Weeds":
qa_chain = initialize_qa_chain(specie_selector, application_mode, model_name, default_persist_directory_weeds)
else:
print("No Appropriate Chain Selected")
return qa_chain
specie_selector.change(
init_qa_chain,
inputs=[specie_selector, application_mode,model_name, domain_name ],
outputs=[qa_chain_state]
)
model_name.change(
init_qa_chain,
inputs=[specie_selector, application_mode,model_name, domain_name ],
outputs=[qa_chain_state]
)
#####
def update_species_list(domain):
if domain == "Insects":
return gr.Dropdown( species_list_insects, value=species_list_insects[0], label="Species", info="Select the Species", interactive=True, scale=1, visible=True )
elif domain == "Weeds":
return gr.Dropdown( species_list_weeds, value=species_list_weeds[0], label="Species", info="Select the Species", interactive=True, scale=1, visible=True )
domain_name.change(
update_species_list,
inputs=[domain_name],
outputs=[specie_selector]
)
# When the user clicks Enter and the user message is submitted
user_prompt_message.submit(
user,
[user_prompt_message, chatbot],
[chatbot],
queue=False
).then(
bot,
[model_name, application_mode, user_prompt_message, chatbot, state, qa_chain_state, domain_name],
[chatbot, state]
).then(input_cleanup,
[],
[user_prompt_message],
queue=False
)
# When the user clicks the submit button
submitBtn.click(
user,
[user_prompt_message, chatbot],
[chatbot],
queue=False
).then(
bot,
[model_name, application_mode, user_prompt_message, chatbot, state, qa_chain_state, domain_name],
[chatbot, state]
).then(
input_cleanup,
[],
[user_prompt_message],
queue=False
)
# When the user clicks the clear button
# clear.click(lambda: None, None, chatbot, queue=False).success(init_history, [state], [state])
if __name__ == "__main__":
# demo.launch()
demo.queue().launch(allowed_paths=["/"], share=False, show_error=True)