File size: 21,387 Bytes
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
"""
Dataset Loader Module (Refactored)

Generic dataset loading supporting multiple formats:
- OBO (Open Biomedical Ontologies)
- CSV/TSV
- JSON/JSON-LD
- Custom adapters

Configuration-driven to support any domain, not just medical.
"""

import os
import re
import json
import csv
import logging
import hashlib
import urllib.request
from pathlib import Path
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Any, Type
from dataclasses import dataclass, field

from .knowledge_graph import Entity, EntityCategory, KnowledgeGraph
from .config import DatasetConfig, get_config

logger = logging.getLogger(__name__)


@dataclass
class OntologyTerm:
    """Generic ontology term representation."""
    id: str
    name: str
    definition: str = ""
    synonyms: List[str] = field(default_factory=list)
    xrefs: Dict[str, str] = field(default_factory=dict)
    is_a: List[str] = field(default_factory=list)
    relationships: List[Tuple[str, str]] = field(default_factory=list)
    namespace: str = ""
    is_obsolete: bool = False
    
    def to_entity(self, category: EntityCategory) -> Entity:
        """Convert to Entity."""
        return Entity(
            id=self.id,
            name=self.name,
            category=category,
            description=self.definition,
            synonyms=self.synonyms,
            xrefs=self.xrefs,
            properties={"is_a": self.is_a, "namespace": self.namespace}
        )


class DatasetAdapter(ABC):
    """Abstract base class for dataset adapters."""
    
    @abstractmethod
    def parse(self, content: str) -> Dict[str, OntologyTerm]:
        """Parse content and return dictionary of terms."""
        pass
    
    @abstractmethod
    def can_handle(self, source_type: str) -> bool:
        """Check if this adapter can handle the source type."""
        pass


class OBOAdapter(DatasetAdapter):
    """Parser for OBO (Open Biomedical Ontologies) format."""
    
    def can_handle(self, source_type: str) -> bool:
        return source_type.lower() == "obo"
    
    def parse(self, content: str) -> Dict[str, OntologyTerm]:
        """Parse OBO format content."""
        terms = {}
        
        # Split into stanzas
        stanzas = re.split(r'\n\[', content)
        
        for stanza in stanzas[1:]:  # Skip header
            if stanza.startswith('Term]'):
                term = self._parse_term(stanza[5:])
                if term and not term.is_obsolete:
                    terms[term.id] = term
        
        logger.info(f"Parsed {len(terms)} terms from OBO content")
        return terms
    
    def _parse_term(self, stanza: str) -> Optional[OntologyTerm]:
        """Parse a single term stanza."""
        data = {
            "id": "", "name": "", "definition": "",
            "synonyms": [], "xrefs": {}, "is_a": [],
            "relationships": [], "namespace": "", "is_obsolete": False
        }
        
        for line in stanza.split('\n'):
            line = line.strip()
            if not line or line.startswith('!') or ':' not in line:
                continue
            
            tag, _, value = line.partition(':')
            tag, value = tag.strip(), value.strip()
            
            if tag == 'id':
                data['id'] = value
            elif tag == 'name':
                data['name'] = value
            elif tag == 'def':
                match = re.match(r'"([^"]*)"', value)
                if match:
                    data['definition'] = match.group(1)
            elif tag == 'synonym':
                match = re.match(r'"([^"]*)"', value)
                if match:
                    data['synonyms'].append(match.group(1))
            elif tag == 'xref':
                if ':' in value:
                    xref_ns, _, xref_id = value.partition(':')
                    xref_id = xref_id.split()[0] if ' ' in xref_id else xref_id
                    data['xrefs'][xref_ns.strip()] = xref_id.strip()
            elif tag == 'is_a':
                parent_id = value.split('!')[0].strip()
                data['is_a'].append(parent_id)
            elif tag == 'relationship':
                parts = value.split()
                if len(parts) >= 2:
                    data['relationships'].append((parts[0], parts[1]))
            elif tag == 'is_obsolete':
                data['is_obsolete'] = value.lower() == 'true'
            elif tag == 'namespace':
                data['namespace'] = value
        
        if data['id'] and data['name']:
            return OntologyTerm(**data)
        return None


class CSVAdapter(DatasetAdapter):
    """Parser for CSV/TSV format datasets."""
    
    # Default column mappings
    DEFAULT_MAPPINGS = {
        "id": ["id", "ID", "identifier", "code"],
        "name": ["name", "Name", "label", "Label", "title"],
        "definition": ["definition", "description", "Description", "desc"],
        "synonyms": ["synonyms", "aliases", "alt_names"],
    }
    
    def __init__(self, column_mappings: Optional[Dict[str, str]] = None):
        self.column_mappings = column_mappings or {}
    
    def can_handle(self, source_type: str) -> bool:
        return source_type.lower() in ["csv", "tsv"]
    
    def parse(self, content: str) -> Dict[str, OntologyTerm]:
        """Parse CSV content."""
        terms = {}
        
        # Detect delimiter
        dialect = csv.Sniffer().sniff(content[:1024])
        reader = csv.DictReader(content.splitlines(), dialect=dialect)
        
        # Map columns
        col_map = self._map_columns(reader.fieldnames or [])
        
        for row in reader:
            term = self._row_to_term(row, col_map)
            if term:
                terms[term.id] = term
        
        logger.info(f"Parsed {len(terms)} terms from CSV content")
        return terms
    
    def _map_columns(self, fieldnames: List[str]) -> Dict[str, str]:
        """Map fieldnames to standard term fields."""
        col_map = {}
        
        for field, possible_names in self.DEFAULT_MAPPINGS.items():
            # Check explicit mappings first
            if field in self.column_mappings:
                col_map[field] = self.column_mappings[field]
            else:
                # Try to auto-detect
                for name in possible_names:
                    if name in fieldnames:
                        col_map[field] = name
                        break
        
        return col_map
    
    def _row_to_term(self, row: Dict, col_map: Dict[str, str]) -> Optional[OntologyTerm]:
        """Convert CSV row to OntologyTerm."""
        term_id = row.get(col_map.get("id", ""), "")
        name = row.get(col_map.get("name", ""), "")
        
        if not term_id or not name:
            return None
        
        definition = row.get(col_map.get("definition", ""), "")
        
        # Parse synonyms (comma-separated or JSON array)
        synonyms_raw = row.get(col_map.get("synonyms", ""), "")
        if synonyms_raw.startswith("["):
            try:
                synonyms = json.loads(synonyms_raw)
            except json.JSONDecodeError:
                synonyms = []
        else:
            synonyms = [s.strip() for s in synonyms_raw.split(",") if s.strip()]
        
        return OntologyTerm(
            id=term_id,
            name=name,
            definition=definition,
            synonyms=synonyms
        )


class JSONAdapter(DatasetAdapter):
    """Parser for JSON format datasets."""
    
    def __init__(self, terms_path: str = "terms", id_field: str = "id", name_field: str = "name"):
        self.terms_path = terms_path
        self.id_field = id_field
        self.name_field = name_field
    
    def can_handle(self, source_type: str) -> bool:
        return source_type.lower() in ["json", "json-ld"]
    
    def parse(self, content: str) -> Dict[str, OntologyTerm]:
        """Parse JSON content."""
        terms = {}
        data = json.loads(content)
        
        # Navigate to terms array
        items = data
        if self.terms_path:
            for key in self.terms_path.split("."):
                if isinstance(items, dict):
                    items = items.get(key, [])
                else:
                    break
        
        if not isinstance(items, list):
            items = [items] if isinstance(items, dict) else []
        
        for item in items:
            term = self._item_to_term(item)
            if term:
                terms[term.id] = term
        
        logger.info(f"Parsed {len(terms)} terms from JSON content")
        return terms
    
    def _item_to_term(self, item: Dict) -> Optional[OntologyTerm]:
        """Convert JSON item to OntologyTerm."""
        term_id = item.get(self.id_field, "")
        name = item.get(self.name_field, "")
        
        if not term_id or not name:
            return None
        
        return OntologyTerm(
            id=term_id,
            name=name,
            definition=item.get("definition", item.get("description", "")),
            synonyms=item.get("synonyms", item.get("aliases", [])),
            xrefs=item.get("xrefs", {}),
            is_a=item.get("is_a", item.get("parents", [])),
        )


class DatasetLoader:
    """
    Main dataset loader supporting multiple formats and sources.
    
    Usage:
        loader = DatasetLoader()
        loader.load_dataset(config)  # Single dataset
        loader.load_all_datasets()   # From config
    """
    
    def __init__(self, cache_dir: Optional[str] = None):
        self.cache_dir = Path(cache_dir or get_config().cache_dir)
        self.cache_dir.mkdir(parents=True, exist_ok=True)
        
        # Register adapters
        self.adapters: List[DatasetAdapter] = [
            OBOAdapter(),
            CSVAdapter(),
            JSONAdapter(),
        ]
        
        # Loaded data
        self.datasets: Dict[str, Dict[str, OntologyTerm]] = {}
    
    def register_adapter(self, adapter: DatasetAdapter):
        """Register a custom adapter."""
        self.adapters.insert(0, adapter)  # Custom adapters take priority
    
    def get_adapter(self, source_type: str) -> Optional[DatasetAdapter]:
        """Get adapter for source type."""
        for adapter in self.adapters:
            if adapter.can_handle(source_type):
                return adapter
        return None
    
    def load_dataset(self, config: DatasetConfig) -> Dict[str, OntologyTerm]:
        """Load a single dataset based on configuration."""
        logger.info(f"Loading dataset: {config.name}")
        
        # Check cache
        if config.cache_enabled:
            cached = self._load_from_cache(config)
            if cached:
                self.datasets[config.name] = cached
                return cached
        
        # Get content
        content = self._get_content(config)
        if not content:
            logger.warning(f"No content for dataset: {config.name}")
            return {}
        
        # Parse with appropriate adapter
        adapter = self.get_adapter(config.source_type)
        if not adapter:
            logger.error(f"No adapter for source type: {config.source_type}")
            return {}
        
        terms = adapter.parse(content)
        
        # Cache results
        if config.cache_enabled:
            self._save_to_cache(config, terms)
        
        self.datasets[config.name] = terms
        return terms
    
    def load_all_datasets(self) -> Dict[str, Dict[str, OntologyTerm]]:
        """Load all datasets from configuration."""
        config = get_config()
        for dataset_config in config.datasets:
            self.load_dataset(dataset_config)
        return self.datasets
    
    def _get_content(self, config: DatasetConfig) -> Optional[str]:
        """Get content from URL or file path."""
        # Try URL first
        if config.source_url:
            try:
                logger.info(f"Downloading from: {config.source_url}")
                req = urllib.request.Request(
                    config.source_url,
                    headers={'User-Agent': 'HITL-KG/1.0'}
                )
                with urllib.request.urlopen(req, timeout=60) as response:
                    return response.read().decode('utf-8')
            except Exception as e:
                logger.warning(f"Download failed: {e}")
        
        # Try local file
        if config.source_path:
            path = Path(config.source_path)
            if path.exists():
                return path.read_text(encoding='utf-8')
        
        return None
    
    def _cache_path(self, config: DatasetConfig) -> Path:
        """Get cache file path for a dataset."""
        return self.cache_dir / f"{config.name}_cache.json"
    
    def _load_from_cache(self, config: DatasetConfig) -> Optional[Dict[str, OntologyTerm]]:
        """Load dataset from cache if valid."""
        cache_path = self._cache_path(config)
        
        if not cache_path.exists():
            return None
        
        # Check age
        mtime = datetime.fromtimestamp(cache_path.stat().st_mtime)
        age_days = (datetime.now() - mtime).days
        if age_days > config.cache_max_age_days:
            return None
        
        try:
            with open(cache_path) as f:
                data = json.load(f)
            
            terms = {}
            for term_id, term_data in data.get("terms", {}).items():
                terms[term_id] = OntologyTerm(
                    id=term_data["id"],
                    name=term_data["name"],
                    definition=term_data.get("definition", ""),
                    synonyms=term_data.get("synonyms", []),
                    xrefs=term_data.get("xrefs", {}),
                    is_a=term_data.get("is_a", []),
                    relationships=term_data.get("relationships", []),
                    namespace=term_data.get("namespace", ""),
                )
            
            logger.info(f"Loaded {len(terms)} terms from cache: {config.name}")
            return terms
            
        except Exception as e:
            logger.warning(f"Cache load failed: {e}")
            return None
    
    def _save_to_cache(self, config: DatasetConfig, terms: Dict[str, OntologyTerm]):
        """Save dataset to cache."""
        try:
            cache_path = self._cache_path(config)
            
            data = {
                "name": config.name,
                "source_type": config.source_type,
                "timestamp": datetime.now().isoformat(),
                "terms": {
                    tid: {
                        "id": t.id,
                        "name": t.name,
                        "definition": t.definition,
                        "synonyms": t.synonyms,
                        "xrefs": t.xrefs,
                        "is_a": t.is_a,
                        "relationships": t.relationships,
                        "namespace": t.namespace,
                    }
                    for tid, t in terms.items()
                }
            }
            
            with open(cache_path, 'w') as f:
                json.dump(data, f)
            
            logger.info(f"Cached {len(terms)} terms for: {config.name}")
            
        except Exception as e:
            logger.warning(f"Cache save failed: {e}")


def build_knowledge_graph(loader: DatasetLoader) -> KnowledgeGraph:
    """
    Build a KnowledgeGraph from loaded datasets.
    
    This function:
    1. Converts OntologyTerms to Entities
    2. Creates relationships between entities
    3. Indexes entities for semantic search
    """
    kg = KnowledgeGraph()
    config = get_config()
    
    # Map dataset names to categories
    category_map = {
        ds.name: EntityCategory(ds.entity_category)
        for ds in config.datasets
        if ds.entity_category in [c.value for c in EntityCategory]
    }
    
    # Add entities from each dataset
    for dataset_name, terms in loader.datasets.items():
        category = category_map.get(dataset_name, EntityCategory.FINDING)
        
        for term_id, term in terms.items():
            entity = term.to_entity(category)
            kg.add_entity(entity)
    
    # Build relationships based on ontology structure
    _build_relationships(kg, loader)
    
    logger.info(f"Built KG with {len(kg.entities)} entities")
    return kg


def _build_relationships(kg: KnowledgeGraph, loader: DatasetLoader):
    """Build relationships between entities."""
    
    # Disease-symptom associations (curated mappings)
    disease_symptom_mappings = _get_disease_symptom_mappings()
    
    for disease_id, symptom_mappings in disease_symptom_mappings.items():
        if disease_id not in kg.entities:
            continue
        
        for symptom_name, confidence in symptom_mappings:
            # Find symptom entity by name
            symptom_entity = None
            for entity in kg.entities.values():
                if entity.category == EntityCategory.SYMPTOM:
                    if (entity.name.lower() == symptom_name.lower() or
                        symptom_name.lower() in [s.lower() for s in entity.synonyms]):
                        symptom_entity = entity
                        break
            
            if symptom_entity:
                kg.add_relation(disease_id, symptom_entity.id, "causes", confidence)
    
    # Add treatment relations
    _add_treatment_entities(kg)


def _get_disease_symptom_mappings() -> Dict[str, List[Tuple[str, float]]]:
    """
    Get curated disease-symptom mappings.
    
    These are based on medical literature and provide high-quality
    associations that may not be present in the raw ontologies.
    """
    return {
        "DOID:8469": [  # Influenza
            ("fever", 0.95), ("cough", 0.85), ("fatigue", 0.90),
            ("body aches", 0.85), ("headache", 0.80), ("chills", 0.75),
        ],
        "DOID:0080600": [  # COVID-19
            ("fever", 0.80), ("cough", 0.85), ("fatigue", 0.90),
            ("shortness of breath", 0.70), ("headache", 0.60),
            ("loss of taste", 0.50), ("loss of smell", 0.50),
        ],
        "DOID:10459": [  # Common cold
            ("runny nose", 0.95), ("sore throat", 0.80), ("cough", 0.75),
            ("nasal congestion", 0.85), ("sneezing", 0.80),
        ],
        "DOID:552": [  # Pneumonia
            ("fever", 0.90), ("cough", 0.95), ("shortness of breath", 0.85),
            ("chest pain", 0.70), ("fatigue", 0.80),
        ],
        "DOID:6132": [  # Bronchitis
            ("cough", 0.95), ("fatigue", 0.60),
            ("shortness of breath", 0.50),
        ],
        "DOID:10534": [  # Strep throat
            ("sore throat", 0.98), ("fever", 0.80), ("headache", 0.50),
        ],
        "DOID:13084": [  # Sinusitis
            ("headache", 0.85), ("nasal congestion", 0.90),
            ("runny nose", 0.80),
        ],
        "DOID:8893": [  # Migraine
            ("headache", 0.99), ("nausea", 0.70),
        ],
    }


def _add_treatment_entities(kg: KnowledgeGraph):
    """Add treatment entities and relationships."""
    treatments = [
        Entity("tx_rest", "Rest", EntityCategory.TREATMENT,
               "Physical and mental rest", ["bed rest"]),
        Entity("tx_fluids", "Fluid Intake", EntityCategory.TREATMENT,
               "Increased hydration", ["hydration"]),
        Entity("tx_acetaminophen", "Acetaminophen", EntityCategory.MEDICATION,
               "Pain and fever reducer", ["paracetamol", "Tylenol"]),
        Entity("tx_ibuprofen", "Ibuprofen", EntityCategory.MEDICATION,
               "NSAID for pain and inflammation", ["Advil", "Motrin"]),
        Entity("tx_antiviral", "Antiviral Medication", EntityCategory.MEDICATION,
               "Medications for viral infections", ["oseltamivir", "Tamiflu"]),
        Entity("tx_decongestant", "Decongestants", EntityCategory.MEDICATION,
               "Nasal congestion relief", ["pseudoephedrine"]),
    ]
    
    for tx in treatments:
        kg.add_entity(tx)
    
    # Treatment relationships
    treatment_map = {
        "DOID:8469": ["tx_rest", "tx_fluids", "tx_acetaminophen", "tx_antiviral"],
        "DOID:0080600": ["tx_rest", "tx_fluids", "tx_acetaminophen"],
        "DOID:10459": ["tx_rest", "tx_fluids", "tx_decongestant"],
        "DOID:552": ["tx_rest"],
    }
    
    for disease_id, treatment_ids in treatment_map.items():
        if disease_id in kg.entities:
            for tx_id in treatment_ids:
                if tx_id in kg.entities:
                    kg.add_relation(tx_id, disease_id, "treats", 0.8)


def load_knowledge_graph(use_embeddings: bool = True) -> KnowledgeGraph:
    """
    Main entry point: Load datasets and build knowledge graph.
    
    Args:
        use_embeddings: If True, also index entities for semantic search
    """
    loader = DatasetLoader()
    loader.load_all_datasets()
    
    kg = build_knowledge_graph(loader)
    
    if use_embeddings:
        try:
            from .embedding_service import get_embedding_service
            embedding_service = get_embedding_service()
            embedding_service.index_entities(kg.get_entity_dict_for_embedding())
        except Exception as e:
            logger.warning(f"Failed to initialize embeddings: {e}")
    
    return kg