File size: 49,532 Bytes
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
 
 
3f48755
 
 
 
 
 
c5880fb
3f48755
c5880fb
 
3f48755
 
 
c5880fb
3f48755
c5880fb
3f48755
 
 
 
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
3f48755
 
 
 
 
 
c5880fb
 
3f48755
 
 
 
c5880fb
3f48755
 
 
 
c5880fb
3f48755
c5880fb
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
 
3f48755
c5880fb
 
3f48755
c5880fb
 
3f48755
c5880fb
3f48755
c5880fb
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
3f48755
c5880fb
 
 
 
 
 
3f48755
c5880fb
3f48755
 
c5880fb
 
3f48755
 
 
c5880fb
 
3f48755
c5880fb
 
 
 
 
 
3f48755
 
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
 
 
 
c5880fb
3f48755
 
c5880fb
 
 
 
3f48755
 
 
 
c5880fb
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
3f48755
c5880fb
 
3f48755
 
c5880fb
 
 
 
3f48755
c5880fb
 
 
 
3f48755
 
c5880fb
3f48755
 
c5880fb
 
3f48755
c5880fb
 
 
3f48755
 
 
 
c5880fb
3f48755
c5880fb
 
 
 
 
 
 
3f48755
 
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
 
c5880fb
 
 
3f48755
 
 
 
 
c5880fb
3f48755
 
 
 
 
 
 
 
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
 
 
c5880fb
3f48755
c5880fb
 
 
3f48755
 
c5880fb
 
 
 
3f48755
 
 
 
 
 
 
 
 
c5880fb
 
 
 
 
 
3f48755
 
 
 
 
 
c5880fb
 
 
 
 
3f48755
 
 
 
c5880fb
3f48755
c5880fb
 
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
3f48755
 
 
 
c5880fb
 
3f48755
 
c5880fb
3f48755
c5880fb
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
3f48755
c5880fb
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
 
3f48755
c5880fb
3f48755
c5880fb
3f48755
c5880fb
 
 
 
 
 
3f48755
 
c5880fb
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
3f48755
c5880fb
 
3f48755
c5880fb
3f48755
 
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
3f48755
 
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
 
3f48755
c5880fb
 
3f48755
c5880fb
 
 
 
 
3f48755
c5880fb
3f48755
c5880fb
 
 
 
 
 
 
3f48755
c5880fb
3f48755
 
c5880fb
 
3f48755
 
 
 
 
c5880fb
 
 
 
 
3f48755
 
 
c5880fb
3f48755
 
c5880fb
 
 
3f48755
 
c5880fb
 
 
3f48755
c5880fb
3f48755
c5880fb
3f48755
c5880fb
 
 
3f48755
 
c5880fb
3f48755
 
 
 
 
c5880fb
3f48755
 
 
 
c5880fb
 
 
 
3f48755
 
 
c5880fb
3f48755
 
c5880fb
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f48755
 
 
 
c5880fb
 
3f48755
 
c5880fb
3f48755
 
 
c5880fb
 
 
3f48755
c5880fb
 
3f48755
c5880fb
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
 
 
3f48755
c5880fb
3f48755
 
c5880fb
 
 
3f48755
 
c5880fb
 
3f48755
c5880fb
3f48755
c5880fb
3f48755
 
c5880fb
 
3f48755
c5880fb
 
 
 
 
 
 
 
 
 
3f48755
c5880fb
 
 
3f48755
c5880fb
 
 
 
 
3f48755
c5880fb
 
 
 
 
 
 
3f48755
c5880fb
 
 
 
3f48755
 
c5880fb
 
 
3f48755
 
c5880fb
 
 
 
 
 
3f48755
c5880fb
 
 
 
3f48755
c5880fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
"""
LLM Engine Module (Refactored)

Simplified reasoning engine with:
1. Embedding-based entity extraction (replaces keyword matching)
2. Clean separation between OpenAI and local modes
3. Proper context building with language support
4. ReasoningChainCache for Graph-of-Thoughts structure

References:
- Chain-of-Thought prompting (Wei et al., 2022)
- Tree of Thoughts (Yao et al., 2023)
- Graph of Thoughts (Besta et al., 2023)
"""

import os
import json
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from datetime import datetime
from enum import Enum
from typing import Dict, List, Optional, Any, Generator, Tuple

from .knowledge_graph import (
    KnowledgeGraph, ReasoningNode, ReasoningEdge,
    NodeType, EdgeType, EntityCategory, Entity, create_node_id
)
from .embedding_service import get_embedding_service, SearchResult

logger = logging.getLogger(__name__)


# ============================================================================
# REASONING CHAIN CACHE - Graph-of-Thoughts Structure
# ============================================================================

@dataclass
class ChainNode:
    """A node in the reasoning chain with parent tracking."""
    node_id: str
    node_type: NodeType
    parents: List[str] = field(default_factory=list)
    children: List[str] = field(default_factory=list)
    depth: int = 0


class ReasoningChainCache:
    """
    Manages the structure of reasoning chains for Graph-of-Thoughts.
    
    Tracks:
    - Parent-child relationships between reasoning steps
    - Multiple converging/diverging paths
    - Proper depth tracking for hierarchy
    
    Reference: Graph of Thoughts (Besta et al., 2023)
    """
    
    def __init__(self):
        self.chains: Dict[str, ChainNode] = {}
        self.root_nodes: List[str] = []
        self.current_branch: List[str] = []
    
    def add_node(
        self,
        node_id: str,
        node_type: NodeType,
        parent_ids: Optional[List[str]] = None
    ) -> ChainNode:
        """Add a node to the reasoning chain."""
        parent_ids = parent_ids or []
        
        # Calculate depth
        depth = 0
        if parent_ids:
            max_parent_depth = max(
                self.chains[pid].depth for pid in parent_ids if pid in self.chains
            )
            depth = max_parent_depth + 1
        
        chain_node = ChainNode(
            node_id=node_id,
            node_type=node_type,
            parents=parent_ids,
            depth=depth
        )
        
        self.chains[node_id] = chain_node
        
        # Update parent's children
        for pid in parent_ids:
            if pid in self.chains:
                self.chains[pid].children.append(node_id)
        
        # Track roots
        if not parent_ids:
            self.root_nodes.append(node_id)
        
        # Update current branch
        self.current_branch.append(node_id)
        
        node_type_str = node_type.value if node_type else "unknown"
        logger.debug(f"Chain: Added {node_type_str} node {node_id[:8]} at depth {depth}")
        return chain_node
    
    def get_active_nodes(self) -> List[str]:
        """Get nodes that can be extended (leaf nodes)."""
        return [
            nid for nid, node in self.chains.items()
            if not node.children
        ]
    
    def get_ancestors(self, node_id: str) -> List[str]:
        """Get all ancestor node IDs."""
        ancestors = []
        to_visit = [node_id]
        visited = set()
        
        while to_visit:
            current = to_visit.pop(0)
            if current in visited:
                continue
            visited.add(current)
            
            if current in self.chains:
                for parent in self.chains[current].parents:
                    ancestors.append(parent)
                    to_visit.append(parent)
        
        return ancestors
    
    def create_branch(self, from_node_id: str) -> None:
        """Start a new branch from the specified node."""
        if from_node_id in self.chains:
            self.current_branch = [from_node_id]
            logger.info(f"Started new branch from node {from_node_id[:8]}")
    
    def get_context_nodes(self, max_nodes: int = 10) -> List[str]:
        """Get recent nodes for context building."""
        # Return recent nodes from current branch
        return self.current_branch[-max_nodes:]
    
    def clear(self):
        """Clear all chain data."""
        self.chains.clear()
        self.root_nodes.clear()
        self.current_branch.clear()


# ============================================================================
# CONFIGURATION
# ============================================================================


class LLMProvider(str, Enum):
    """Supported LLM providers."""
    OPENAI = "openai"
    LOCAL = "local"


@dataclass
class GenerationConfig:
    """Configuration for reasoning generation."""
    model: str = "gpt-4o-mini"
    temperature: float = 0.7
    max_tokens: int = 2048
    max_reasoning_steps: int = 10
    include_alternatives: bool = True
    language: str = "en"


@dataclass
class ReasoningContext:
    """Context for reasoning generation."""
    query: str
    language: str = "en"
    matched_entities: List[SearchResult] = field(default_factory=list)
    previous_reasoning: List[Dict] = field(default_factory=list)
    anchor_node_id: Optional[str] = None
    is_branching: bool = False


# Multilingual prompts
SYSTEM_PROMPTS = {
    "en": """You are a medical reasoning assistant using Graph-of-Thoughts methodology.
Analyze symptoms and provide structured diagnostic analysis with BRANCHING reasoning paths.

CRITICAL: You MUST always return a JSON object with a non-empty "steps" array.

IMPORTANT - CREATE NON-LINEAR REASONING:
- Generate multiple parallel reasoning branches, not just sequential steps
- Use "supports" array to indicate which prior steps support each new step
- A step can be supported by MULTIPLE prior steps (converging evidence)
- Create at least 2-3 alternative diagnostic pathways

OUTPUT FORMAT (JSON) - ALWAYS INCLUDE STEPS:
{
    "steps": [
        {"type": "fact", "content": "Patient reports headache", "confidence": 0.95, "supports": [0]},
        {"type": "fact", "content": "Patient has fever 38.5°C", "confidence": 0.95, "supports": [0]},
        {"type": "reasoning", "content": "Symptoms suggest infection", "confidence": 0.8, "supports": [1, 2]},
        {"type": "reasoning", "content": "Could indicate tension headache", "confidence": 0.6, "supports": [1]},
        {"type": "hypothesis", "content": "Primary: Viral infection", "confidence": 0.75, "supports": [3]},
        {"type": "hypothesis", "content": "Alternative: Bacterial infection", "confidence": 0.5, "supports": [3]},
        {"type": "conclusion", "content": "Recommend tests and monitoring", "confidence": 0.85, "supports": [5, 6]}
    ],
    "alternatives": [
        {"content": "Migraine if symptoms persist without fever", "confidence": 0.4, "reason": "Headache pattern"}
    ]
}

Step indices: 0 = user query, 1+ = your generated steps. 
GUIDELINES:
1. ALWAYS generate 5-8 reasoning steps - NEVER return empty steps array
2. Multiple facts can support the same reasoning step (supports: [1, 2, 3])
3. Create divergent then convergent reasoning paths
4. Include at least 2 alternative hypotheses
5. Respond in the SAME LANGUAGE as the user query

DISCLAIMER: Educational purposes only. Consult healthcare professionals.""",

    "uk": """Ви — медичний асистент, що використовує методологію Graph-of-Thoughts.
Аналізуйте симптоми та створюйте РОЗГАЛУЖЕНІ шляхи міркування.

КРИТИЧНО: Ви ПОВИННІ завжди повертати JSON об'єкт з непорожнім масивом "steps".

ФОРМАТ ВИВОДУ (JSON) - ЗАВЖДИ ВКЛЮЧАЙТЕ STEPS:
{
    "steps": [
        {"type": "fact", "content": "Пацієнт скаржиться на головний біль", "confidence": 0.95, "supports": [0]},
        {"type": "fact", "content": "У пацієнта температура 38.5°C", "confidence": 0.95, "supports": [0]},
        {"type": "reasoning", "content": "Симптоми вказують на інфекцію", "confidence": 0.8, "supports": [1, 2]},
        {"type": "hypothesis", "content": "Первинна: Вірусна інфекція", "confidence": 0.75, "supports": [3]},
        {"type": "hypothesis", "content": "Альтернатива: Застуда", "confidence": 0.5, "supports": [3]},
        {"type": "conclusion", "content": "Рекомендовано обстеження", "confidence": 0.85, "supports": [4, 5]}
    ],
    "alternatives": [
        {"content": "Мігрень, якщо симптоми без температури", "confidence": 0.4, "reason": "Характер болю"}
    ]
}

ВАЖЛИВО:
- ЗАВЖДИ генеруйте 5-8 кроків міркування - НІКОЛИ не повертайте порожній масив steps
- Використовуйте масив "supports" для зв'язку кроків
- Відповідайте УКРАЇНСЬКОЮ МОВОЮ

ВІДМОВА: Лише в освітніх цілях. Зверніться до лікаря.""",

    "ru": """Вы — медицинский ассистент, использующий методологию Graph-of-Thoughts.
Анализируйте симптомы и создавайте РАЗВЕТВЛЁННЫЕ пути рассуждений.

КРИТИЧНО: Вы ДОЛЖНЫ всегда возвращать JSON объект с непустым массивом "steps".

ФОРМАТ ВЫВОДА (JSON) - ВСЕГДА ВКЛЮЧАЙТЕ STEPS:
{
    "steps": [
        {"type": "fact", "content": "Пациент жалуется на головную боль", "confidence": 0.95, "supports": [0]},
        {"type": "fact", "content": "У пациента температура 38.5°C", "confidence": 0.95, "supports": [0]},
        {"type": "reasoning", "content": "Симптомы указывают на инфекцию", "confidence": 0.8, "supports": [1, 2]},
        {"type": "hypothesis", "content": "Первичная: Вирусная инфекция", "confidence": 0.75, "supports": [3]},
        {"type": "hypothesis", "content": "Альтернатива: Простуда", "confidence": 0.5, "supports": [3]},
        {"type": "conclusion", "content": "Рекомендовано обследование", "confidence": 0.85, "supports": [4, 5]}
    ],
    "alternatives": [
        {"content": "Мигрень, если симптомы без температуры", "confidence": 0.4, "reason": "Характер боли"}
    ]
}

ВАЖНО:
- ВСЕГДА генерируйте 5-8 шагов рассуждений - НИКОГДА не возвращайте пустой массив steps
- Используйте массив "supports" для связи шагов
- Отвечайте НА РУССКОМ ЯЗЫКЕ

ОТКАЗ: Только в образовательных целях. Обратитесь к врачу.""",
}

LANGUAGE_NAMES = {
    "en": "English", "uk": "Ukrainian", "ru": "Russian",
    "es": "Spanish", "de": "German", "fr": "French",
}


def detect_language(text: str) -> str:
    """
    Detect language of text using simple heuristics.
    For production, use langdetect or similar library.
    """
    text_lower = text.lower()
    
    # Cyrillic detection
    cyrillic_chars = sum(1 for c in text if '\u0400' <= c <= '\u04FF')
    if cyrillic_chars > len(text) * 0.3:
        # Distinguish Ukrainian from Russian
        ukrainian_markers = ['і', 'ї', 'є', 'ґ']
        if any(m in text_lower for m in ukrainian_markers):
            return "uk"
        return "ru"
    
    # Latin-based detection (simplified)
    spanish_markers = ['¿', '¡', 'ñ', 'ción', 'mente']
    german_markers = ['ß', 'ü', 'ö', 'ä', 'ich', 'und', 'der', 'die']
    french_markers = ['ç', 'œ', 'être', 'avoir', 'très']
    
    if any(m in text_lower for m in spanish_markers):
        return "es"
    if any(m in text_lower for m in german_markers):
        return "de"
    if any(m in text_lower for m in french_markers):
        return "fr"
    
    return "en"


class ReasoningEngine(ABC):
    """Abstract base class for reasoning engines with Graph-of-Thoughts support."""
    
    def __init__(self, kg: KnowledgeGraph):
        self.kg = kg
        self.chain_cache = ReasoningChainCache()
    
    @abstractmethod
    def generate(
        self,
        context: ReasoningContext,
        config: GenerationConfig
    ) -> Generator[ReasoningNode, None, None]:
        """Generate reasoning steps."""
        pass
    
    def reset_chain(self):
        """Reset the reasoning chain cache."""
        self.chain_cache.clear()
    
    def build_context(
        self,
        query: str,
        anchor_node_id: Optional[str] = None
    ) -> ReasoningContext:
        """Build reasoning context from query using embedding-based search."""
        language = detect_language(query)
        
        context = ReasoningContext(query=query, language=language)
        
        # Use embedding service for entity extraction
        try:
            embedding_service = get_embedding_service()
            
            # Extract symptoms from query
            symptom_results = embedding_service.extract_entities_from_text(
                text=query,
                category="symptom",
                top_k=5,
                threshold=0.35
            )
            context.matched_entities = symptom_results
            
            if symptom_results:
                logger.info(
                    f"Extracted {len(symptom_results)} entities: "
                    f"{[r.entity_data.get('name') for r in symptom_results]}"
                )
        except Exception as e:
            logger.warning(f"Embedding search failed: {e}")
        
        # Build previous reasoning context
        recent_nodes = sorted(
            self.kg.nodes.values(),
            key=lambda x: x.timestamp
        )[-10:]
        
        context.previous_reasoning = [
            {
                "role": "assistant" if n.node_type != NodeType.QUERY else "user",
                "content": f"[{n.node_type.value}]: {n.content}",
                "id": n.id,
                "type": n.node_type.value
            }
            for n in recent_nodes
        ]
        
        # Set anchor node
        if anchor_node_id:
            context.anchor_node_id = anchor_node_id
            last_node = self.kg.get_last_active_node()
            if last_node and anchor_node_id != last_node.id:
                context.is_branching = True
        
        return context
    
    def _create_query_node(
        self,
        context: ReasoningContext
    ) -> Tuple[ReasoningNode, Optional[ReasoningNode]]:
        """Create query node and connect to parent."""
        # Determine parent node
        parent_node = None
        edge_type = EdgeType.LEADS_TO
        
        if context.anchor_node_id:
            parent_node = self.kg.nodes.get(context.anchor_node_id)
            if context.is_branching:
                edge_type = EdgeType.ALTERNATIVE
        
        if not parent_node:
            parent_node = self.kg.get_last_active_node()
            if parent_node:
                edge_type = EdgeType.FOLLOW_UP
        
        # Create query node
        query_node = ReasoningNode(
            id=create_node_id(),
            label=context.query[:60],
            node_type=NodeType.QUERY,
            content=context.query,
            confidence=1.0,
            language=context.language
        )
        self.kg.add_node(query_node)
        
        # Connect to parent
        if parent_node:
            edge = ReasoningEdge(
                source=parent_node.id,
                target=query_node.id,
                edge_type=edge_type
            )
            self.kg.add_edge(edge)
        
        return query_node, parent_node
    
    def get_system_prompt(self, language: str) -> str:
        """Get system prompt for language."""
        return SYSTEM_PROMPTS.get(language, SYSTEM_PROMPTS["en"])


class OpenAIEngine(ReasoningEngine):
    """OpenAI-based reasoning engine."""
    
    def __init__(self, kg: KnowledgeGraph, api_key: Optional[str] = None):
        super().__init__(kg)
        self.api_key = api_key or os.environ.get("OPENAI_API_KEY")
        self._client = None
    
    @property
    def client(self):
        """Lazy-load OpenAI client."""
        if self._client is None:
            try:
                from openai import OpenAI
                self._client = OpenAI(api_key=self.api_key)
            except ImportError:
                raise ImportError("Install openai: pip install openai")
        return self._client
    
    def generate(
        self,
        context: ReasoningContext,
        config: GenerationConfig
    ) -> Generator[ReasoningNode, None, None]:
        """Generate reasoning using OpenAI."""
        query_node, _ = self._create_query_node(context)
        yield query_node
        
        # Build prompt
        user_prompt = self._build_prompt(context)
        system_prompt = self.get_system_prompt(context.language)
        
        try:
            response = self.client.chat.completions.create(
                model=config.model,
                messages=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": user_prompt}
                ],
                temperature=config.temperature,
                max_tokens=config.max_tokens,
                response_format={"type": "json_object"}
            )
            
            response_text = response.choices[0].message.content
            logger.debug(f"OpenAI response: {response_text[:500]}...")
            
            data = json.loads(response_text)
            steps = data.get("steps", [])
            
            # If OpenAI returned empty steps, use local fallback
            if not steps:
                logger.warning(f"OpenAI returned empty steps for query: {context.query[:50]}...")
                logger.warning("Falling back to local reasoning")
                
                # Create a basic reasoning structure
                steps = [
                    {"type": "fact", "content": f"Query received: {context.query}", "confidence": 0.95, "supports": [0]},
                    {"type": "reasoning", "content": "Analyzing the provided information", "confidence": 0.8, "supports": [1]},
                    {"type": "hypothesis", "content": "Based on the query, further analysis needed", "confidence": 0.6, "supports": [2]},
                    {"type": "conclusion", "content": "Please provide more specific symptoms for accurate analysis. Consult a healthcare professional.", "confidence": 0.5, "supports": [3]}
                ]
            
            # Create reasoning nodes
            step_nodes = {0: query_node}
            previous_node = query_node
            
            for i, step in enumerate(steps, 1):
                node = self._create_step_node(step, context.language)
                self.kg.add_node(node)
                step_nodes[i] = node
                
                # Connect based on 'supports' field
                supports = step.get("supports", [])
                connected = False
                
                if supports:
                    for sup_idx in supports:
                        if sup_idx in step_nodes:
                            edge = ReasoningEdge(
                                source=step_nodes[sup_idx].id,
                                target=node.id,
                                edge_type=EdgeType.SUPPORTS,
                                weight=node.confidence
                            )
                            if self.kg.add_edge(edge):
                                connected = True
                                logger.debug(f"Connected step {i} to step {sup_idx} via SUPPORTS")
                
                # Fallback: always connect to previous node if no valid supports connected
                if not connected:
                    edge = ReasoningEdge(
                        source=previous_node.id,
                        target=node.id,
                        edge_type=EdgeType.LEADS_TO,
                        weight=node.confidence
                    )
                    edge_id = self.kg.add_edge(edge)
                    if edge_id:
                        logger.debug(f"Connected step {i} to previous via LEADS_TO (fallback)")
                    else:
                        logger.error(f"Failed to connect step {i} - node may be isolated!")
                
                previous_node = node
                yield node
            
            # Add alternatives as ghost nodes
            if config.include_alternatives:
                last_reasoning_node = previous_node  # Connect alternatives to last step
                for alt in data.get("alternatives", []):
                    ghost = self._create_alternative_node(alt, context.language)
                    self.kg.add_node(ghost)
                    
                    # Connect to last reasoning node for proper graph structure
                    edge = ReasoningEdge(
                        source=last_reasoning_node.id,
                        target=ghost.id,
                        edge_type=EdgeType.ALTERNATIVE,
                        weight=ghost.confidence
                    )
                    self.kg.add_edge(edge)
                    
                    yield ghost
                    
        except json.JSONDecodeError as e:
            logger.error(f"Failed to parse response: {e}")
            yield self._create_error_node(query_node, "Could not parse response")
        except Exception as e:
            logger.error(f"OpenAI API error: {e}")
            yield self._create_error_node(query_node, str(e))
    
    def _build_prompt(self, context: ReasoningContext) -> str:
        """Build user prompt with context."""
        parts = []
        
        # Language instruction
        lang_name = LANGUAGE_NAMES.get(context.language, "English")
        parts.append(f"RESPOND IN {lang_name.upper()}.\n")
        
        # Previous reasoning
        if context.previous_reasoning:
            parts.append("PREVIOUS CONTEXT:")
            for item in context.previous_reasoning[-5:]:
                parts.append(f"- [{item.get('type')}]: {item['content'][:150]}")
            parts.append("\n--- NEW QUERY ---\n")
        
        parts.append(f"Query: {context.query}\n")
        
        if context.is_branching:
            parts.append("NOTE: Exploring alternative reasoning path.\n")
        
        # Matched entities
        if context.matched_entities:
            parts.append("\nMATCHED MEDICAL ENTITIES:")
            for result in context.matched_entities:
                entity = result.entity_data
                parts.append(
                    f"- {entity.get('name')} ({entity.get('category')}) "
                    f"[confidence: {result.score:.0%}]: {entity.get('description', '')[:80]}"
                )
            
            # Add disease associations
            symptom_ids = [r.entity_id for r in context.matched_entities]
            diseases = self.kg.get_diseases_for_symptoms(symptom_ids)
            
            if diseases:
                parts.append("\nPOSSIBLE CONDITIONS:")
                for disease, score in diseases[:5]:
                    parts.append(f"- {disease.name}: {score:.0%} match")
        
        parts.append("\nProvide structured reasoning as JSON.")
        return "\n".join(parts)
    
    def _create_step_node(self, step: Dict, language: str) -> ReasoningNode:
        """Create reasoning node from step data."""
        type_map = {
            "fact": NodeType.FACT,
            "reasoning": NodeType.REASONING,
            "hypothesis": NodeType.HYPOTHESIS,
            "conclusion": NodeType.CONCLUSION,
            "evidence": NodeType.EVIDENCE,
        }
        
        node_type = type_map.get(step.get("type", "reasoning"), NodeType.REASONING)
        
        return ReasoningNode(
            id=create_node_id(),
            label=step.get("content", "")[:60],
            node_type=node_type,
            content=step.get("content", ""),
            confidence=float(step.get("confidence", 0.8)),
            kg_entity_id=step.get("kg_entity_id"),
            language=language
        )
    
    def _create_alternative_node(self, alt: Dict, language: str) -> ReasoningNode:
        """Create ghost node for alternative."""
        return ReasoningNode(
            id=create_node_id(),
            label=f"Alt: {alt.get('content', '')[:50]}",
            node_type=NodeType.GHOST,
            content=alt.get("content", ""),
            confidence=float(alt.get("confidence", 0.3)),
            metadata={"reason": alt.get("reason", ""), "original_type": "hypothesis"},
            language=language
        )
    
    def _create_error_node(self, query_node: ReasoningNode, error: str) -> ReasoningNode:
        """Create error node."""
        node = ReasoningNode(
            id=create_node_id(),
            label="Error",
            node_type=NodeType.REASONING,
            content=f"Analysis failed: {error}",
            confidence=0.0
        )
        self.kg.add_node(node)
        self.kg.add_edge(ReasoningEdge(
            source=query_node.id,
            target=node.id,
            edge_type=EdgeType.LEADS_TO
        ))
        return node


class LocalEngine(ReasoningEngine):
    """
    Local knowledge-graph-based reasoning engine.
    Uses embeddings for entity matching, no LLM required.
    """
    
    def __init__(self, kg: KnowledgeGraph):
        super().__init__(kg)
        self._last_conclusion_id: Optional[str] = None
    
    def generate(
        self,
        context: ReasoningContext,
        config: GenerationConfig
    ) -> Generator[ReasoningNode, None, None]:
        """Generate reasoning using knowledge graph only."""
        query_node, _ = self._create_query_node(context)
        yield query_node
        
        # Use matched entities from embedding search
        if context.matched_entities:
            yield from self._entity_based_reasoning(
                query_node, context.matched_entities, context.language
            )
        else:
            yield from self._generic_reasoning(query_node, context.language)
    
    def _entity_based_reasoning(
        self,
        query_node: ReasoningNode,
        matched_entities: List[SearchResult],
        language: str
    ) -> Generator[ReasoningNode, None, None]:
        """Generate reasoning based on matched entities with proper Graph-of-Thoughts structure."""
        messages = self._get_messages(language)
        
        # Create individual symptom fact nodes (for graph branching)
        symptom_nodes = []
        symptom_ids = []
        
        for result in matched_entities[:5]:  # Limit to 5 symptoms
            symptom_name = result.entity_data.get("name", "Unknown")
            symptom_id = result.entity_id
            symptom_ids.append(symptom_id)
            
            fact_node = ReasoningNode(
                id=create_node_id(),
                label=f"Symptom: {symptom_name[:30]}",
                node_type=NodeType.FACT,
                content=f"{messages['identified']}: {symptom_name}",
                confidence=result.score,
                kg_entity_id=symptom_id,
                language=language
            )
            self.kg.add_node(fact_node)
            # Each symptom connects to query
            self.kg.add_edge(ReasoningEdge(
                source=query_node.id, target=fact_node.id, edge_type=EdgeType.LEADS_TO
            ))
            symptom_nodes.append(fact_node)
            yield fact_node
        
        # Reasoning node: knowledge base search (connects from ALL symptoms)
        reasoning_node = ReasoningNode(
            id=create_node_id(),
            label=messages['searching'][:50],
            node_type=NodeType.REASONING,
            content=messages['consulting'],
            confidence=0.9,
            language=language
        )
        self.kg.add_node(reasoning_node)
        
        # Connect ALL symptom nodes to the reasoning node (converging evidence)
        for symptom_node in symptom_nodes:
            self.kg.add_edge(ReasoningEdge(
                source=symptom_node.id, target=reasoning_node.id, 
                edge_type=EdgeType.SUPPORTS, weight=symptom_node.confidence
            ))
        yield reasoning_node
        
        # Get possible diseases
        possible_diseases = self.kg.get_diseases_for_symptoms(symptom_ids)
        
        # Generate hypotheses (branching from reasoning node)
        hypothesis_nodes = []
        primary_hypothesis = None
        
        for i, (disease, score) in enumerate(possible_diseases[:3]):
            is_primary = (i == 0)
            
            matching_symptoms = self.kg.get_symptoms_for_disease(disease.id)
            matching_names = [
                s.name for s in matching_symptoms
                if s.id in symptom_ids
            ]
            
            hypothesis = ReasoningNode(
                id=create_node_id(),
                label=f"{'Primary' if is_primary else 'Alt'}: {disease.name}",
                node_type=NodeType.HYPOTHESIS if is_primary else NodeType.GHOST,
                content=(
                    f"{disease.name} ({score:.0%} {messages['match']})\n"
                    f"{messages['description']}: {disease.description}\n"
                    f"{messages['matching']}: {', '.join(matching_names)}"
                ),
                confidence=score,
                kg_entity_id=disease.id,
                metadata={} if is_primary else {"original_type": "hypothesis"},
                language=language
            )
            self.kg.add_node(hypothesis)
            
            # Connect from reasoning node
            edge_type = EdgeType.SUPPORTS if is_primary else EdgeType.ALTERNATIVE
            self.kg.add_edge(ReasoningEdge(
                source=reasoning_node.id, target=hypothesis.id, 
                edge_type=edge_type, weight=score
            ))
            
            hypothesis_nodes.append(hypothesis)
            if is_primary:
                primary_hypothesis = hypothesis
            
            yield hypothesis
        
        # Conclusion (connects from ALL hypotheses - converging)
        if primary_hypothesis and possible_diseases:
            top_disease = possible_diseases[0][0]
            treatments = self.kg.get_treatments_for_disease(top_disease.id)
            
            treatment_text = "\n".join([
                f"- {tx.name}: {tx.description}"
                for tx in treatments[:5]
            ])
            
            conclusion = ReasoningNode(
                id=create_node_id(),
                label=messages['recommendation'][:50],
                node_type=NodeType.CONCLUSION,
                content=(
                    f"{messages['based_on']} {top_disease.name} {messages['most_likely']}.\n\n"
                    f"{messages['treatments']}:\n{treatment_text}\n\n"
                    f"⚠️ {messages['disclaimer']}"
                ),
                confidence=possible_diseases[0][1] * 0.9,
                language=language
            )
            self.kg.add_node(conclusion)
            
            # Connect from ALL hypothesis nodes (converging evidence)
            for hyp_node in hypothesis_nodes:
                edge_type = EdgeType.SUPPORTS if hyp_node == primary_hypothesis else EdgeType.ALTERNATIVE
                self.kg.add_edge(ReasoningEdge(
                    source=hyp_node.id, target=conclusion.id,
                    edge_type=edge_type, weight=hyp_node.confidence
                ))
            
            self._last_conclusion_id = conclusion.id
            yield conclusion
        else:
            yield from self._no_match_conclusion(reasoning_node, language)
    
    def _generic_reasoning(
        self,
        query_node: ReasoningNode,
        language: str
    ) -> Generator[ReasoningNode, None, None]:
        """Generic reasoning when no entities matched - creates branching structure."""
        messages = self._get_messages(language)
        
        # Extract simple keywords from query
        query_text = query_node.content.lower()
        symptom_keywords = []
        
        # Comprehensive multilingual symptom detection
        # Each language has multiple forms and common phrases
        common_symptoms = {
            'en': [
                # Head
                'headache', 'head ache', 'head pain', 'migraine',
                # Fever/Temperature
                'fever', 'temperature', 'chills', 'sweating', 'hot',
                # Respiratory
                'cough', 'coughing', 'cold', 'flu', 'runny nose', 'congestion',
                'shortness of breath', 'breathing', 'sore throat', 'throat',
                # Pain
                'pain', 'ache', 'aching', 'hurts', 'hurt', 'sore', 'burning',
                # Digestive
                'nausea', 'vomiting', 'diarrhea', 'stomach', 'belly', 'abdomen',
                'constipation', 'bloating',
                # General
                'fatigue', 'tired', 'weakness', 'weak', 'exhausted', 'dizzy',
                'dizziness', 'lightheaded', 'faint',
                # Skin
                'rash', 'itching', 'swelling', 'swollen',
                # Other
                'insomnia', 'anxiety', 'stress', 'depression',
            ],
            'uk': [
                # Голова
                'головний біль', 'болить голова', 'біль голови', 'мігрень',
                # Температура
                'температура', 'гарячка', 'лихоманка', 'озноб', 'жар',
                # Дихання
                'кашель', 'кашляю', 'застуда', 'грип', 'нежить', 'закладений ніс',
                'задишка', 'важко дихати', 'біль в горлі', 'горло болить',
                # Біль
                'біль', 'болить', 'боляче', 'ниє', 'печіння',
                # Травлення
                'нудота', 'нудить', 'блювота', 'пронос', 'діарея', 'живіт',
                'шлунок', 'запор', 'здуття',
                # Загальні
                'втома', 'слабкість', 'знесилення', 'запаморочення',
                'паморочиться', 'млість',
                # Шкіра
                'висип', 'свербіж', 'набряк', 'опух',
                # Інше
                'безсоння', 'тривога', 'стрес', 'депресія',
            ],
            'ru': [
                # Голова
                'головная боль', 'болит голова', 'боль в голове', 'мигрень',
                # Температура
                'температура', 'жар', 'лихорадка', 'озноб', 'потливость',
                # Дыхание
                'кашель', 'кашляю', 'простуда', 'грипп', 'насморк', 'заложенность',
                'одышка', 'тяжело дышать', 'боль в горле', 'горло болит',
                # Боль
                'боль', 'болит', 'больно', 'ноет', 'жжение',
                # Пищеварение
                'тошнота', 'тошнит', 'рвота', 'понос', 'диарея', 'живот',
                'желудок', 'запор', 'вздутие',
                # Общие
                'усталость', 'слабость', 'утомление', 'головокружение',
                'кружится голова', 'обморок',
                # Кожа
                'сыпь', 'зуд', 'отёк', 'опухло', 'опухоль',
                # Другое
                'бессонница', 'тревога', 'стресс', 'депрессия',
            ],
        }
        
        # Also check all languages if language detection might be wrong
        all_symptoms = common_symptoms.get(language, []) + common_symptoms.get('en', [])
        if language not in ['en']:
            all_symptoms += common_symptoms.get('uk', []) + common_symptoms.get('ru', [])
        
        for symptom in all_symptoms:
            if symptom in query_text:
                # Avoid duplicates
                if symptom not in symptom_keywords:
                    symptom_keywords.append(symptom)
        
        logger.debug(f"Detected symptoms in '{query_text[:50]}...': {symptom_keywords}")
        
        # Create branching structure with identified symptoms
        symptom_nodes = []
        
        if len(symptom_keywords) > 1:
            # Multiple symptoms - create separate fact nodes (branching structure)
            for symptom in symptom_keywords[:4]:
                fact = ReasoningNode(
                    id=create_node_id(),
                    label=f"Symptom: {symptom.title()[:25]}",
                    node_type=NodeType.FACT,
                    content=f"{messages['identified']}: {symptom}",
                    confidence=0.85,
                    language=language
                )
                self.kg.add_node(fact)
                self.kg.add_edge(ReasoningEdge(
                    source=query_node.id, target=fact.id, edge_type=EdgeType.LEADS_TO
                ))
                symptom_nodes.append(fact)
                yield fact
            
            # Reasoning node that converges from all symptoms
            reasoning = ReasoningNode(
                id=create_node_id(),
                label=messages['analyzing'][:50],
                node_type=NodeType.REASONING,
                content=f"{messages['consulting']} - analyzing {len(symptom_keywords)} symptoms",
                confidence=0.9,
                language=language
            )
            self.kg.add_node(reasoning)
            
            # Connect ALL symptom nodes to reasoning (converging evidence)
            for sym_node in symptom_nodes:
                self.kg.add_edge(ReasoningEdge(
                    source=sym_node.id, target=reasoning.id, 
                    edge_type=EdgeType.SUPPORTS, weight=sym_node.confidence
                ))
            yield reasoning
            
            # Create branching hypotheses
            hyp1 = ReasoningNode(
                id=create_node_id(),
                label="Possible: Common condition",
                node_type=NodeType.HYPOTHESIS,
                content="Common condition matching these symptoms",
                confidence=0.6,
                language=language
            )
            self.kg.add_node(hyp1)
            self.kg.add_edge(ReasoningEdge(
                source=reasoning.id, target=hyp1.id, edge_type=EdgeType.SUPPORTS
            ))
            yield hyp1
            
            hyp2 = ReasoningNode(
                id=create_node_id(),
                label="Alternative: Secondary condition",
                node_type=NodeType.GHOST,
                content="Alternative diagnosis to consider",
                confidence=0.4,
                metadata={"original_type": "hypothesis"},
                language=language
            )
            self.kg.add_node(hyp2)
            self.kg.add_edge(ReasoningEdge(
                source=reasoning.id, target=hyp2.id, edge_type=EdgeType.ALTERNATIVE
            ))
            yield hyp2
            
            # Conclusion connecting from both hypotheses
            conclusion = ReasoningNode(
                id=create_node_id(),
                label=messages['recommendation'][:50],
                node_type=NodeType.CONCLUSION,
                content=f"{messages['provide_more']}\n\n⚠️ {messages['disclaimer']}",
                confidence=0.5,
                language=language
            )
            self.kg.add_node(conclusion)
            self.kg.add_edge(ReasoningEdge(
                source=hyp1.id, target=conclusion.id, edge_type=EdgeType.SUPPORTS
            ))
            self.kg.add_edge(ReasoningEdge(
                source=hyp2.id, target=conclusion.id, edge_type=EdgeType.ALTERNATIVE
            ))
            self._last_conclusion_id = conclusion.id
            yield conclusion
        else:
            # Single or no symptoms - simpler structure
            step1 = ReasoningNode(
                id=create_node_id(),
                label=messages['analyzing'][:50],
                node_type=NodeType.REASONING,
                content=messages['analyzing'],
                confidence=0.9,
                language=language
            )
            self.kg.add_node(step1)
            self.kg.add_edge(ReasoningEdge(
                source=query_node.id, target=step1.id, edge_type=EdgeType.LEADS_TO
            ))
            yield step1
            
            yield from self._no_match_conclusion(step1, language)
    
    def _no_match_conclusion(
        self,
        parent_node: ReasoningNode,
        language: str
    ) -> Generator[ReasoningNode, None, None]:
        """Conclusion when no matches found."""
        messages = self._get_messages(language)
        
        conclusion = ReasoningNode(
            id=create_node_id(),
            label=messages['recommendation'][:50],
            node_type=NodeType.CONCLUSION,
            content=f"{messages['provide_more']}\n\n⚠️ {messages['disclaimer']}",
            confidence=0.5,
            language=language
        )
        self.kg.add_node(conclusion)
        self.kg.add_edge(ReasoningEdge(
            source=parent_node.id, target=conclusion.id, edge_type=EdgeType.LEADS_TO
        ))
        self._last_conclusion_id = conclusion.id
        yield conclusion
    
    def _get_messages(self, language: str) -> Dict[str, str]:
        """Get localized messages."""
        messages = {
            "en": {
                "symptoms": "Symptoms",
                "identified": "Identified symptoms",
                "searching": "Searching knowledge base...",
                "consulting": "Consulting medical knowledge graph for conditions",
                "match": "match",
                "description": "Description",
                "matching": "Matching symptoms",
                "recommendation": "Recommendation",
                "based_on": "Based on analysis,",
                "most_likely": "is the most likely condition",
                "treatments": "Recommended treatments",
                "analyzing": "Analyzing query for medical terms",
                "provide_more": "Could not identify specific symptoms. Please provide more details.",
                "disclaimer": "DISCLAIMER: Educational purposes only. Consult healthcare professionals."
            },
            "uk": {
                "symptoms": "Симптоми",
                "identified": "Визначені симптоми",
                "searching": "Пошук у базі знань...",
                "consulting": "Консультація медичного графу знань",
                "match": "збіг",
                "description": "Опис",
                "matching": "Симптоми, що збігаються",
                "recommendation": "Рекомендація",
                "based_on": "На основі аналізу,",
                "most_likely": "є найбільш ймовірним станом",
                "treatments": "Рекомендоване лікування",
                "analyzing": "Аналіз запиту на медичні терміни",
                "provide_more": "Не вдалося визначити симптоми. Надайте більше деталей.",
                "disclaimer": "ВІДМОВА: Лише в освітніх цілях. Зверніться до лікаря."
            },
            "ru": {
                "symptoms": "Симптомы",
                "identified": "Определённые симптомы",
                "searching": "Поиск в базе знаний...",
                "consulting": "Консультация медицинского графа знаний",
                "match": "совпадение",
                "description": "Описание",
                "matching": "Совпадающие симптомы",
                "recommendation": "Рекомендация",
                "based_on": "На основе анализа,",
                "most_likely": "является наиболее вероятным состоянием",
                "treatments": "Рекомендуемое лечение",
                "analyzing": "Анализ запроса на медицинские термины",
                "provide_more": "Не удалось определить симптомы. Предоставьте больше деталей.",
                "disclaimer": "ОТКАЗ: Только в образовательных целях. Обратитесь к врачу."
            }
        }
        return messages.get(language, messages["en"])


class GraphSynchronizer:
    """
    Handles graph operations triggered by UI interactions.
    Simplified from original - removed complex state management.
    """
    
    def __init__(self, engine: ReasoningEngine, kg: KnowledgeGraph):
        self.engine = engine
        self.kg = kg
        self.edit_history: List[Dict] = []
    
    def prune_node(self, node_id: str) -> Dict:
        """Prune a node and its descendants."""
        result = self.kg.prune_branch(node_id)
        self._log_edit("prune", node_id, result)
        return {"success": True, "pruned": result}
    
    def resurrect_node(self, node_id: str) -> Dict:
        """Resurrect a ghost node."""
        success = self.kg.resurrect_node(node_id)
        self._log_edit("resurrect", node_id)
        return {"success": success}
    
    def inject_fact(
        self,
        parent_node_id: str,
        fact_content: str,
        entity_id: Optional[str] = None
    ) -> Dict:
        """Inject a new fact into the reasoning chain."""
        node = ReasoningNode(
            id=create_node_id(),
            label=fact_content[:60],
            node_type=NodeType.FACT,
            content=fact_content,
            confidence=1.0,
            kg_entity_id=entity_id,
            metadata={"user_injected": True}
        )
        
        self.kg.add_node(node)
        self.kg.add_edge(ReasoningEdge(
            source=parent_node_id,
            target=node.id,
            edge_type=EdgeType.REQUIRES,
            metadata={"user_injected": True}
        ))
        
        self._log_edit("inject", parent_node_id, {"new_node_id": node.id})
        return {"success": True, "new_node_id": node.id}
    
    def record_feedback(
        self,
        node_id: str,
        feedback_type: str,
        context: str = ""
    ) -> Dict:
        """Record user feedback on a node (for RLHF)."""
        node = self.kg.nodes.get(node_id)
        if not node:
            return {"success": False, "error": "Node not found"}
        
        node.metadata["feedback"] = feedback_type
        node.metadata["feedback_context"] = context
        node.metadata["feedback_timestamp"] = datetime.now().isoformat()
        
        # Adjust confidence
        if feedback_type == "correct":
            node.confidence = min(node.confidence * 1.2, 1.0)
        elif feedback_type == "incorrect":
            node.confidence = max(node.confidence * 0.5, 0.1)
        
        self.kg.update_node(node_id, confidence=node.confidence, metadata=node.metadata)
        self._log_edit("feedback", node_id, {"type": feedback_type})
        
        return {"success": True, "new_confidence": node.confidence}
    
    def _log_edit(self, op_type: str, node_id: str, data: Any = None):
        """Log edit for history."""
        self.edit_history.append({
            "type": op_type,
            "node_id": node_id,
            "data": data,
            "timestamp": datetime.now().isoformat()
        })
    
    def export_history(self) -> List[Dict]:
        """Export edit history for RLHF training."""
        return self.edit_history.copy()


def create_engine(
    provider: LLMProvider,
    kg: KnowledgeGraph,
    api_key: Optional[str] = None
) -> ReasoningEngine:
    """Factory function to create reasoning engine."""
    if provider == LLMProvider.OPENAI:
        key = api_key or os.environ.get("OPENAI_API_KEY")
        if not key:
            raise ValueError("OpenAI API key required")
        return OpenAIEngine(kg, api_key=key)
    else:
        return LocalEngine(kg)