from typing import List, Union import datasets as ds import evaluate import numpy as np import numpy.typing as npt from evaluate.utils.file_utils import add_start_docstrings _DESCRIPTION = r"""\ Computes the ratio of valid elements to all elements in the layout, where the area within the canvas of a valid element must be greater than 0.1% of the canvas. """ _KWARGS_DESCRIPTION = """\ Args: predictions (`list` of `list` of `float`): A list of lists of floats representing normalized `ltrb`-format bounding boxes. gold_labels (`list` of `list` of `int`): A list of lists of integers representing class labels. canvas_width (`int`, *optional*): Width of the canvas in pixels. Can be provided at initialization or during computation. canvas_height (`int`, *optional*): Height of the canvas in pixels. Can be provided at initialization or during computation. Returns: float: The ratio of valid elements to all elements (0.0 to 1.0). An element is considered valid if its area within the canvas is greater than 0.1% of the canvas area. Examples: >>> import evaluate >>> import numpy as np >>> metric = evaluate.load("creative-graphic-design/layout-validity") >>> # Normalized bounding boxes (left, top, right, bottom) >>> predictions = [[[0.1, 0.1, 0.5, 0.5], [0.6, 0.6, 0.9, 0.9]]] >>> gold_labels = [[1, 2]] # Non-zero labels indicate valid elements >>> result = metric.compute(predictions=predictions, gold_labels=gold_labels, canvas_width=512, canvas_height=512) >>> print(result) 1.0 """ _CITATION = """\ @inproceedings{hsu2023posterlayout, title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={6018--6026}, year={2023} } """ @add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class LayoutValidity(evaluate.Metric): def __init__( self, canvas_width: int | None = None, canvas_height: int | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.canvas_width = canvas_width self.canvas_height = canvas_height def _info(self) -> evaluate.EvaluationModuleInfo: return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=ds.Features( { "predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), "gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), } ), codebase_urls=[ "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L105-L127" ], ) def _compute( self, *, predictions: Union[npt.NDArray[np.float64], List[List[float]]], gold_labels: Union[npt.NDArray[np.int64], List[int]], canvas_width: int | None = None, canvas_height: int | None = None, ) -> float: # パラメータの優先順位処理 canvas_width = canvas_width if canvas_width is not None else self.canvas_width canvas_height = ( canvas_height if canvas_height is not None else self.canvas_height ) if canvas_width is None or canvas_height is None: raise ValueError( "canvas_width and canvas_height must be provided either " "at initialization or during computation" ) predictions = np.array(predictions) gold_labels = np.array(gold_labels) predictions[:, :, ::2] *= canvas_width predictions[:, :, 1::2] *= canvas_height total_elements, empty_elements = 0, 0 w = canvas_width / 100 h = canvas_height / 100 assert len(predictions) == len(gold_labels) for gold_label, prediction in zip(gold_labels, predictions): mask = (gold_label > 0).reshape(-1) mask_prediction = prediction[mask] total_elements += len(mask_prediction) for mp in mask_prediction: xl, yl, xr, yr = mp xl = max(0, xl) yl = max(0, yl) xr = min(canvas_width, xr) yr = min(canvas_height, yr) if abs((xr - xl) * (yr - yl)) < w * h * 10: empty_elements += 1 return 1 - empty_elements / total_elements