cleaning
Browse files- tests.ipynb +8 -436
tests.ipynb
CHANGED
|
@@ -334,88 +334,9 @@
|
|
| 334 |
},
|
| 335 |
{
|
| 336 |
"cell_type": "code",
|
| 337 |
-
"execution_count":
|
| 338 |
-
"metadata": {},
|
| 339 |
-
"outputs": [
|
| 340 |
-
{
|
| 341 |
-
"data": {
|
| 342 |
-
"text/plain": [
|
| 343 |
-
"<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f2c318dd350>"
|
| 344 |
-
]
|
| 345 |
-
},
|
| 346 |
-
"execution_count": 79,
|
| 347 |
-
"metadata": {},
|
| 348 |
-
"output_type": "execute_result"
|
| 349 |
-
}
|
| 350 |
-
],
|
| 351 |
-
"source": [
|
| 352 |
-
"grouped_df"
|
| 353 |
-
]
|
| 354 |
-
},
|
| 355 |
-
{
|
| 356 |
-
"cell_type": "code",
|
| 357 |
-
"execution_count": 77,
|
| 358 |
"metadata": {},
|
| 359 |
-
"outputs": [
|
| 360 |
-
{
|
| 361 |
-
"name": "stdout",
|
| 362 |
-
"output_type": "stream",
|
| 363 |
-
"text": [
|
| 364 |
-
"Accuracy: 0.7149425287356321, Hierarchical Precision: 0.9314641744548287, Hierarchical Recall: 0.8898809523809523, Hierarchical F-measure: 0.9101978691019786\n",
|
| 365 |
-
"Language: da\n",
|
| 366 |
-
"Result: {'accuracy': 0.7149425287356321, 'hierarchical_precision': 0.9314641744548287, 'hierarchical_recall': 0.8898809523809523, 'hierarchical_fmeasure': 0.9101978691019786}\n",
|
| 367 |
-
"\n",
|
| 368 |
-
"Accuracy: 0.9075297225891678, Hierarchical Precision: 0.9578651685393258, Hierarchical Recall: 0.9742857142857143, Hierarchical F-measure: 0.9660056657223796\n",
|
| 369 |
-
"Language: en\n",
|
| 370 |
-
"Result: {'accuracy': 0.9075297225891678, 'hierarchical_precision': 0.9578651685393258, 'hierarchical_recall': 0.9742857142857143, 'hierarchical_fmeasure': 0.9660056657223796}\n",
|
| 371 |
-
"\n",
|
| 372 |
-
"Accuracy: 0.8794080604534005, Hierarchical Precision: 0.9774590163934426, Hierarchical Recall: 0.9655870445344129, Hierarchical F-measure: 0.9714867617107942\n",
|
| 373 |
-
"Language: es\n",
|
| 374 |
-
"Result: {'accuracy': 0.8794080604534005, 'hierarchical_precision': 0.9774590163934426, 'hierarchical_recall': 0.9655870445344129, 'hierarchical_fmeasure': 0.9714867617107942}\n",
|
| 375 |
-
"\n",
|
| 376 |
-
"Accuracy: 0.9286376274328082, Hierarchical Precision: 0.9591836734693877, Hierarchical Recall: 0.9733727810650887, Hierarchical F-measure: 0.9662261380323054\n",
|
| 377 |
-
"Language: fi\n",
|
| 378 |
-
"Result: {'accuracy': 0.9286376274328082, 'hierarchical_precision': 0.9591836734693877, 'hierarchical_recall': 0.9733727810650887, 'hierarchical_fmeasure': 0.9662261380323054}\n",
|
| 379 |
-
"\n",
|
| 380 |
-
"Accuracy: 0.5772994129158513, Hierarchical Precision: 0.8571428571428571, Hierarchical Recall: 0.8808864265927978, Hierarchical F-measure: 0.8688524590163934\n",
|
| 381 |
-
"Language: fr\n",
|
| 382 |
-
"Result: {'accuracy': 0.5772994129158513, 'hierarchical_precision': 0.8571428571428571, 'hierarchical_recall': 0.8808864265927978, 'hierarchical_fmeasure': 0.8688524590163934}\n",
|
| 383 |
-
"\n",
|
| 384 |
-
"Accuracy: 0.9332579185520362, Hierarchical Precision: 0.9616613418530351, Hierarchical Recall: 0.9525316455696202, Hierarchical F-measure: 0.9570747217806042\n",
|
| 385 |
-
"Language: it\n",
|
| 386 |
-
"Result: {'accuracy': 0.9332579185520362, 'hierarchical_precision': 0.9616613418530351, 'hierarchical_recall': 0.9525316455696202, 'hierarchical_fmeasure': 0.9570747217806042}\n",
|
| 387 |
-
"\n",
|
| 388 |
-
"Accuracy: 0.9313346228239845, Hierarchical Precision: 0.9816849816849816, Hierarchical Recall: 0.9710144927536232, Hierarchical F-measure: 0.97632058287796\n",
|
| 389 |
-
"Language: kk\n",
|
| 390 |
-
"Result: {'accuracy': 0.9313346228239845, 'hierarchical_precision': 0.9816849816849816, 'hierarchical_recall': 0.9710144927536232, 'hierarchical_fmeasure': 0.97632058287796}\n",
|
| 391 |
-
"\n",
|
| 392 |
-
"Accuracy: 0.9369047619047619, Hierarchical Precision: 0.9726962457337884, Hierarchical Recall: 0.9827586206896551, Hierarchical F-measure: 0.9777015437392795\n",
|
| 393 |
-
"Language: ko\n",
|
| 394 |
-
"Result: {'accuracy': 0.9369047619047619, 'hierarchical_precision': 0.9726962457337884, 'hierarchical_recall': 0.9827586206896551, 'hierarchical_fmeasure': 0.9777015437392795}\n",
|
| 395 |
-
"\n",
|
| 396 |
-
"Accuracy: 0.8936170212765957, Hierarchical Precision: 0.9591836734693877, Hierarchical Recall: 0.9563953488372093, Hierarchical F-measure: 0.957787481804949\n",
|
| 397 |
-
"Language: pt\n",
|
| 398 |
-
"Result: {'accuracy': 0.8936170212765957, 'hierarchical_precision': 0.9591836734693877, 'hierarchical_recall': 0.9563953488372093, 'hierarchical_fmeasure': 0.957787481804949}\n",
|
| 399 |
-
"\n",
|
| 400 |
-
"Accuracy: 0.9259259259259259, Hierarchical Precision: 0.971875, Hierarchical Recall: 0.9658385093167702, Hierarchical F-measure: 0.9688473520249222\n",
|
| 401 |
-
"Language: ru\n",
|
| 402 |
-
"Result: {'accuracy': 0.9259259259259259, 'hierarchical_precision': 0.971875, 'hierarchical_recall': 0.9658385093167702, 'hierarchical_fmeasure': 0.9688473520249222}\n",
|
| 403 |
-
"\n",
|
| 404 |
-
"Accuracy: 0.9726027397260274, Hierarchical Precision: 0.9927007299270073, Hierarchical Recall: 1.0, Hierarchical F-measure: 0.9963369963369962\n",
|
| 405 |
-
"Language: sv\n",
|
| 406 |
-
"Result: {'accuracy': 0.9726027397260274, 'hierarchical_precision': 0.9927007299270073, 'hierarchical_recall': 1.0, 'hierarchical_fmeasure': 0.9963369963369962}\n",
|
| 407 |
-
"\n"
|
| 408 |
-
]
|
| 409 |
-
},
|
| 410 |
-
{
|
| 411 |
-
"name": "stderr",
|
| 412 |
-
"output_type": "stream",
|
| 413 |
-
"text": [
|
| 414 |
-
"/tmp/ipykernel_29614/1496722815.py:17: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
|
| 415 |
-
" results_df = pd.concat([results_df, group_result_df], ignore_index=True)\n"
|
| 416 |
-
]
|
| 417 |
-
}
|
| 418 |
-
],
|
| 419 |
"source": [
|
| 420 |
"\n",
|
| 421 |
"results_df = pd.DataFrame(columns=['Language', 'Accuracy', 'Hierarchical Precision', 'Hierarchical Recall', 'Hierarchical F1'])\n",
|
|
@@ -455,179 +376,9 @@
|
|
| 455 |
},
|
| 456 |
{
|
| 457 |
"cell_type": "code",
|
| 458 |
-
"execution_count":
|
| 459 |
"metadata": {},
|
| 460 |
-
"outputs": [
|
| 461 |
-
{
|
| 462 |
-
"data": {
|
| 463 |
-
"text/html": [
|
| 464 |
-
"<div>\n",
|
| 465 |
-
"<style scoped>\n",
|
| 466 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 467 |
-
" vertical-align: middle;\n",
|
| 468 |
-
" }\n",
|
| 469 |
-
"\n",
|
| 470 |
-
" .dataframe tbody tr th {\n",
|
| 471 |
-
" vertical-align: top;\n",
|
| 472 |
-
" }\n",
|
| 473 |
-
"\n",
|
| 474 |
-
" .dataframe thead th {\n",
|
| 475 |
-
" text-align: right;\n",
|
| 476 |
-
" }\n",
|
| 477 |
-
"</style>\n",
|
| 478 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 479 |
-
" <thead>\n",
|
| 480 |
-
" <tr style=\"text-align: right;\">\n",
|
| 481 |
-
" <th></th>\n",
|
| 482 |
-
" <th>JOB</th>\n",
|
| 483 |
-
" <th>DUTIES</th>\n",
|
| 484 |
-
" <th>ISCO</th>\n",
|
| 485 |
-
" <th>ISCO_REL</th>\n",
|
| 486 |
-
" <th>LANGUAGE</th>\n",
|
| 487 |
-
" </tr>\n",
|
| 488 |
-
" </thead>\n",
|
| 489 |
-
" <tbody>\n",
|
| 490 |
-
" <tr>\n",
|
| 491 |
-
" <th>0</th>\n",
|
| 492 |
-
" <td>acopio</td>\n",
|
| 493 |
-
" <td>recibe tarros con leche y despues hecha la lec...</td>\n",
|
| 494 |
-
" <td>9333</td>\n",
|
| 495 |
-
" <td>9333</td>\n",
|
| 496 |
-
" <td>es</td>\n",
|
| 497 |
-
" </tr>\n",
|
| 498 |
-
" <tr>\n",
|
| 499 |
-
" <th>5</th>\n",
|
| 500 |
-
" <td>yo vivo con mi abuela y abuelo mi abuela o tr...</td>\n",
|
| 501 |
-
" <td>mi mama trabaja en limpiar las casas</td>\n",
|
| 502 |
-
" <td>9111</td>\n",
|
| 503 |
-
" <td>9111</td>\n",
|
| 504 |
-
" <td>es</td>\n",
|
| 505 |
-
" </tr>\n",
|
| 506 |
-
" <tr>\n",
|
| 507 |
-
" <th>9</th>\n",
|
| 508 |
-
" <td>dueña de casa</td>\n",
|
| 509 |
-
" <td>mantiene el orden de la casa</td>\n",
|
| 510 |
-
" <td>9701</td>\n",
|
| 511 |
-
" <td>9701</td>\n",
|
| 512 |
-
" <td>es</td>\n",
|
| 513 |
-
" </tr>\n",
|
| 514 |
-
" <tr>\n",
|
| 515 |
-
" <th>10</th>\n",
|
| 516 |
-
" <td>señora de casa</td>\n",
|
| 517 |
-
" <td>trabaja en la lecheria con las bacas y terneros</td>\n",
|
| 518 |
-
" <td>9701</td>\n",
|
| 519 |
-
" <td>9701</td>\n",
|
| 520 |
-
" <td>es</td>\n",
|
| 521 |
-
" </tr>\n",
|
| 522 |
-
" <tr>\n",
|
| 523 |
-
" <th>11</th>\n",
|
| 524 |
-
" <td>trabajadora agricolar</td>\n",
|
| 525 |
-
" <td>aplicar liquidos ala plantas</td>\n",
|
| 526 |
-
" <td>9211</td>\n",
|
| 527 |
-
" <td>9211</td>\n",
|
| 528 |
-
" <td>es</td>\n",
|
| 529 |
-
" </tr>\n",
|
| 530 |
-
" <tr>\n",
|
| 531 |
-
" <th>...</th>\n",
|
| 532 |
-
" <td>...</td>\n",
|
| 533 |
-
" <td>...</td>\n",
|
| 534 |
-
" <td>...</td>\n",
|
| 535 |
-
" <td>...</td>\n",
|
| 536 |
-
" <td>...</td>\n",
|
| 537 |
-
" </tr>\n",
|
| 538 |
-
" <tr>\n",
|
| 539 |
-
" <th>113962</th>\n",
|
| 540 |
-
" <td>Фотограф</td>\n",
|
| 541 |
-
" <td>Рассылал снимки в журналы, получал за это гоно...</td>\n",
|
| 542 |
-
" <td>3431</td>\n",
|
| 543 |
-
" <td>3431</td>\n",
|
| 544 |
-
" <td>ru</td>\n",
|
| 545 |
-
" </tr>\n",
|
| 546 |
-
" <tr>\n",
|
| 547 |
-
" <th>114114</th>\n",
|
| 548 |
-
" <td>Магазин</td>\n",
|
| 549 |
-
" <td>У него есть всой магазин где он работает.</td>\n",
|
| 550 |
-
" <td>5221</td>\n",
|
| 551 |
-
" <td>5221</td>\n",
|
| 552 |
-
" <td>ru</td>\n",
|
| 553 |
-
" </tr>\n",
|
| 554 |
-
" <tr>\n",
|
| 555 |
-
" <th>114295</th>\n",
|
| 556 |
-
" <td>цирк</td>\n",
|
| 557 |
-
" <td>держал перши</td>\n",
|
| 558 |
-
" <td>2659</td>\n",
|
| 559 |
-
" <td>2659</td>\n",
|
| 560 |
-
" <td>ru</td>\n",
|
| 561 |
-
" </tr>\n",
|
| 562 |
-
" <tr>\n",
|
| 563 |
-
" <th>114317</th>\n",
|
| 564 |
-
" <td>Человек-молкула</td>\n",
|
| 565 |
-
" <td>Супер-герой</td>\n",
|
| 566 |
-
" <td>9705</td>\n",
|
| 567 |
-
" <td>9705</td>\n",
|
| 568 |
-
" <td>ru</td>\n",
|
| 569 |
-
" </tr>\n",
|
| 570 |
-
" <tr>\n",
|
| 571 |
-
" <th>114371</th>\n",
|
| 572 |
-
" <td>Строительство заборов</td>\n",
|
| 573 |
-
" <td>Ставит заборы дачникам и не только</td>\n",
|
| 574 |
-
" <td>7111</td>\n",
|
| 575 |
-
" <td>7111</td>\n",
|
| 576 |
-
" <td>ru</td>\n",
|
| 577 |
-
" </tr>\n",
|
| 578 |
-
" </tbody>\n",
|
| 579 |
-
"</table>\n",
|
| 580 |
-
"<p>13055 rows × 5 columns</p>\n",
|
| 581 |
-
"</div>"
|
| 582 |
-
],
|
| 583 |
-
"text/plain": [
|
| 584 |
-
" JOB \\\n",
|
| 585 |
-
"0 acopio \n",
|
| 586 |
-
"5 yo vivo con mi abuela y abuelo mi abuela o tr... \n",
|
| 587 |
-
"9 dueña de casa \n",
|
| 588 |
-
"10 señora de casa \n",
|
| 589 |
-
"11 trabajadora agricolar \n",
|
| 590 |
-
"... ... \n",
|
| 591 |
-
"113962 Фотограф \n",
|
| 592 |
-
"114114 Магазин \n",
|
| 593 |
-
"114295 цирк \n",
|
| 594 |
-
"114317 Человек-молкула \n",
|
| 595 |
-
"114371 Строительство заборов \n",
|
| 596 |
-
"\n",
|
| 597 |
-
" DUTIES ISCO ISCO_REL \\\n",
|
| 598 |
-
"0 recibe tarros con leche y despues hecha la lec... 9333 9333 \n",
|
| 599 |
-
"5 mi mama trabaja en limpiar las casas 9111 9111 \n",
|
| 600 |
-
"9 mantiene el orden de la casa 9701 9701 \n",
|
| 601 |
-
"10 trabaja en la lecheria con las bacas y terneros 9701 9701 \n",
|
| 602 |
-
"11 aplicar liquidos ala plantas 9211 9211 \n",
|
| 603 |
-
"... ... ... ... \n",
|
| 604 |
-
"113962 Рассылал снимки в журналы, получал за это гоно... 3431 3431 \n",
|
| 605 |
-
"114114 У него есть всой магазин где он работает. 5221 5221 \n",
|
| 606 |
-
"114295 держал перши 2659 2659 \n",
|
| 607 |
-
"114317 Супер-герой 9705 9705 \n",
|
| 608 |
-
"114371 Ставит заборы дачникам и не только 7111 7111 \n",
|
| 609 |
-
"\n",
|
| 610 |
-
" LANGUAGE \n",
|
| 611 |
-
"0 es \n",
|
| 612 |
-
"5 es \n",
|
| 613 |
-
"9 es \n",
|
| 614 |
-
"10 es \n",
|
| 615 |
-
"11 es \n",
|
| 616 |
-
"... ... \n",
|
| 617 |
-
"113962 ru \n",
|
| 618 |
-
"114114 ru \n",
|
| 619 |
-
"114295 ru \n",
|
| 620 |
-
"114317 ru \n",
|
| 621 |
-
"114371 ru \n",
|
| 622 |
-
"\n",
|
| 623 |
-
"[13055 rows x 5 columns]"
|
| 624 |
-
]
|
| 625 |
-
},
|
| 626 |
-
"execution_count": 62,
|
| 627 |
-
"metadata": {},
|
| 628 |
-
"output_type": "execute_result"
|
| 629 |
-
}
|
| 630 |
-
],
|
| 631 |
"source": [
|
| 632 |
"# create a dataframe with samples where ISCO and ISCO_REL the same\n",
|
| 633 |
"isco_rel_df_same = isco_rel_df[isco_rel_df['ISCO'] == isco_rel_df['ISCO_REL']]\n",
|
|
@@ -637,179 +388,9 @@
|
|
| 637 |
},
|
| 638 |
{
|
| 639 |
"cell_type": "code",
|
| 640 |
-
"execution_count":
|
| 641 |
"metadata": {},
|
| 642 |
-
"outputs": [
|
| 643 |
-
{
|
| 644 |
-
"data": {
|
| 645 |
-
"text/html": [
|
| 646 |
-
"<div>\n",
|
| 647 |
-
"<style scoped>\n",
|
| 648 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 649 |
-
" vertical-align: middle;\n",
|
| 650 |
-
" }\n",
|
| 651 |
-
"\n",
|
| 652 |
-
" .dataframe tbody tr th {\n",
|
| 653 |
-
" vertical-align: top;\n",
|
| 654 |
-
" }\n",
|
| 655 |
-
"\n",
|
| 656 |
-
" .dataframe thead th {\n",
|
| 657 |
-
" text-align: right;\n",
|
| 658 |
-
" }\n",
|
| 659 |
-
"</style>\n",
|
| 660 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 661 |
-
" <thead>\n",
|
| 662 |
-
" <tr style=\"text-align: right;\">\n",
|
| 663 |
-
" <th></th>\n",
|
| 664 |
-
" <th>JOB</th>\n",
|
| 665 |
-
" <th>DUTIES</th>\n",
|
| 666 |
-
" <th>ISCO</th>\n",
|
| 667 |
-
" <th>ISCO_REL</th>\n",
|
| 668 |
-
" <th>LANGUAGE</th>\n",
|
| 669 |
-
" </tr>\n",
|
| 670 |
-
" </thead>\n",
|
| 671 |
-
" <tbody>\n",
|
| 672 |
-
" <tr>\n",
|
| 673 |
-
" <th>4</th>\n",
|
| 674 |
-
" <td>Asistente judirica</td>\n",
|
| 675 |
-
" <td>gestionar casos de fiscalia</td>\n",
|
| 676 |
-
" <td>3342</td>\n",
|
| 677 |
-
" <td>3411</td>\n",
|
| 678 |
-
" <td>es</td>\n",
|
| 679 |
-
" </tr>\n",
|
| 680 |
-
" <tr>\n",
|
| 681 |
-
" <th>8</th>\n",
|
| 682 |
-
" <td>lechera</td>\n",
|
| 683 |
-
" <td>saca leche</td>\n",
|
| 684 |
-
" <td>9212</td>\n",
|
| 685 |
-
" <td>9211</td>\n",
|
| 686 |
-
" <td>es</td>\n",
|
| 687 |
-
" </tr>\n",
|
| 688 |
-
" <tr>\n",
|
| 689 |
-
" <th>14</th>\n",
|
| 690 |
-
" <td>Mi madre es dueña de casa</td>\n",
|
| 691 |
-
" <td>Realiza todos los quehaceres del hogar, y trab...</td>\n",
|
| 692 |
-
" <td>9111</td>\n",
|
| 693 |
-
" <td>9701</td>\n",
|
| 694 |
-
" <td>es</td>\n",
|
| 695 |
-
" </tr>\n",
|
| 696 |
-
" <tr>\n",
|
| 697 |
-
" <th>34</th>\n",
|
| 698 |
-
" <td>algricultura</td>\n",
|
| 699 |
-
" <td>algricultura</td>\n",
|
| 700 |
-
" <td>9705</td>\n",
|
| 701 |
-
" <td>9211</td>\n",
|
| 702 |
-
" <td>es</td>\n",
|
| 703 |
-
" </tr>\n",
|
| 704 |
-
" <tr>\n",
|
| 705 |
-
" <th>38</th>\n",
|
| 706 |
-
" <td>en la agricultura</td>\n",
|
| 707 |
-
" <td>produce alimentos de vegetacion</td>\n",
|
| 708 |
-
" <td>633</td>\n",
|
| 709 |
-
" <td>9211</td>\n",
|
| 710 |
-
" <td>es</td>\n",
|
| 711 |
-
" </tr>\n",
|
| 712 |
-
" <tr>\n",
|
| 713 |
-
" <th>...</th>\n",
|
| 714 |
-
" <td>...</td>\n",
|
| 715 |
-
" <td>...</td>\n",
|
| 716 |
-
" <td>...</td>\n",
|
| 717 |
-
" <td>...</td>\n",
|
| 718 |
-
" <td>...</td>\n",
|
| 719 |
-
" </tr>\n",
|
| 720 |
-
" <tr>\n",
|
| 721 |
-
" <th>111656</th>\n",
|
| 722 |
-
" <td>gerente de ventas</td>\n",
|
| 723 |
-
" <td>ropa</td>\n",
|
| 724 |
-
" <td>5222</td>\n",
|
| 725 |
-
" <td>1221</td>\n",
|
| 726 |
-
" <td>es</td>\n",
|
| 727 |
-
" </tr>\n",
|
| 728 |
-
" <tr>\n",
|
| 729 |
-
" <th>111700</th>\n",
|
| 730 |
-
" <td>policia jubilado</td>\n",
|
| 731 |
-
" <td>capitan</td>\n",
|
| 732 |
-
" <td>5412</td>\n",
|
| 733 |
-
" <td>9703</td>\n",
|
| 734 |
-
" <td>es</td>\n",
|
| 735 |
-
" </tr>\n",
|
| 736 |
-
" <tr>\n",
|
| 737 |
-
" <th>111792</th>\n",
|
| 738 |
-
" <td>Vendiendo comida</td>\n",
|
| 739 |
-
" <td>Mi padrastro vende comida</td>\n",
|
| 740 |
-
" <td>5223</td>\n",
|
| 741 |
-
" <td>5212</td>\n",
|
| 742 |
-
" <td>es</td>\n",
|
| 743 |
-
" </tr>\n",
|
| 744 |
-
" <tr>\n",
|
| 745 |
-
" <th>112817</th>\n",
|
| 746 |
-
" <td>Собственник ювелирного магазина</td>\n",
|
| 747 |
-
" <td>Продавал ювелирные изделия</td>\n",
|
| 748 |
-
" <td>7313</td>\n",
|
| 749 |
-
" <td>5221</td>\n",
|
| 750 |
-
" <td>ru</td>\n",
|
| 751 |
-
" </tr>\n",
|
| 752 |
-
" <tr>\n",
|
| 753 |
-
" <th>113081</th>\n",
|
| 754 |
-
" <td>Предприниматель</td>\n",
|
| 755 |
-
" <td>Вещи продовал (продукты)</td>\n",
|
| 756 |
-
" <td>5221</td>\n",
|
| 757 |
-
" <td>112</td>\n",
|
| 758 |
-
" <td>ru</td>\n",
|
| 759 |
-
" </tr>\n",
|
| 760 |
-
" </tbody>\n",
|
| 761 |
-
"</table>\n",
|
| 762 |
-
"<p>1958 rows × 5 columns</p>\n",
|
| 763 |
-
"</div>"
|
| 764 |
-
],
|
| 765 |
-
"text/plain": [
|
| 766 |
-
" JOB \\\n",
|
| 767 |
-
"4 Asistente judirica \n",
|
| 768 |
-
"8 lechera \n",
|
| 769 |
-
"14 Mi madre es dueña de casa \n",
|
| 770 |
-
"34 algricultura \n",
|
| 771 |
-
"38 en la agricultura \n",
|
| 772 |
-
"... ... \n",
|
| 773 |
-
"111656 gerente de ventas \n",
|
| 774 |
-
"111700 policia jubilado \n",
|
| 775 |
-
"111792 Vendiendo comida \n",
|
| 776 |
-
"112817 Собственник ювелирного магазина \n",
|
| 777 |
-
"113081 Предприниматель \n",
|
| 778 |
-
"\n",
|
| 779 |
-
" DUTIES ISCO ISCO_REL \\\n",
|
| 780 |
-
"4 gestionar casos de fiscalia 3342 3411 \n",
|
| 781 |
-
"8 saca leche 9212 9211 \n",
|
| 782 |
-
"14 Realiza todos los quehaceres del hogar, y trab... 9111 9701 \n",
|
| 783 |
-
"34 algricultura 9705 9211 \n",
|
| 784 |
-
"38 produce alimentos de vegetacion 633 9211 \n",
|
| 785 |
-
"... ... ... ... \n",
|
| 786 |
-
"111656 ropa 5222 1221 \n",
|
| 787 |
-
"111700 capitan 5412 9703 \n",
|
| 788 |
-
"111792 Mi padrastro vende comida 5223 5212 \n",
|
| 789 |
-
"112817 Продавал ювелирные изделия 7313 5221 \n",
|
| 790 |
-
"113081 Вещи продовал (продукты) 5221 112 \n",
|
| 791 |
-
"\n",
|
| 792 |
-
" LANGUAGE \n",
|
| 793 |
-
"4 es \n",
|
| 794 |
-
"8 es \n",
|
| 795 |
-
"14 es \n",
|
| 796 |
-
"34 es \n",
|
| 797 |
-
"38 es \n",
|
| 798 |
-
"... ... \n",
|
| 799 |
-
"111656 es \n",
|
| 800 |
-
"111700 es \n",
|
| 801 |
-
"111792 es \n",
|
| 802 |
-
"112817 ru \n",
|
| 803 |
-
"113081 ru \n",
|
| 804 |
-
"\n",
|
| 805 |
-
"[1958 rows x 5 columns]"
|
| 806 |
-
]
|
| 807 |
-
},
|
| 808 |
-
"execution_count": 63,
|
| 809 |
-
"metadata": {},
|
| 810 |
-
"output_type": "execute_result"
|
| 811 |
-
}
|
| 812 |
-
],
|
| 813 |
"source": [
|
| 814 |
"# create a dataframe with samples where ISCO and ISCO_REL are different\n",
|
| 815 |
"isco_rel_df_diff = isco_rel_df[isco_rel_df['ISCO'] != isco_rel_df['ISCO_REL']]\n",
|
|
@@ -830,18 +411,9 @@
|
|
| 830 |
},
|
| 831 |
{
|
| 832 |
"cell_type": "code",
|
| 833 |
-
"execution_count":
|
| 834 |
"metadata": {},
|
| 835 |
-
"outputs": [
|
| 836 |
-
{
|
| 837 |
-
"name": "stdout",
|
| 838 |
-
"output_type": "stream",
|
| 839 |
-
"text": [
|
| 840 |
-
"Accuracy: 0.8695796975954173, Hierarchical Precision: 0.9876106194690265, Hierarchical Recall: 0.9911190053285968, Hierarchical F-measure: 0.9893617021276595\n",
|
| 841 |
-
"Evaluation results saved to isco_rel_results.json\n"
|
| 842 |
-
]
|
| 843 |
-
}
|
| 844 |
-
],
|
| 845 |
"source": [
|
| 846 |
"# Compute the hierarchical accuracy\n",
|
| 847 |
"reliability_results = hierarchical_accuracy.compute(predictions=coder2, references=coder1)\n",
|
|
|
|
| 334 |
},
|
| 335 |
{
|
| 336 |
"cell_type": "code",
|
| 337 |
+
"execution_count": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
"metadata": {},
|
| 339 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
"source": [
|
| 341 |
"\n",
|
| 342 |
"results_df = pd.DataFrame(columns=['Language', 'Accuracy', 'Hierarchical Precision', 'Hierarchical Recall', 'Hierarchical F1'])\n",
|
|
|
|
| 376 |
},
|
| 377 |
{
|
| 378 |
"cell_type": "code",
|
| 379 |
+
"execution_count": null,
|
| 380 |
"metadata": {},
|
| 381 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
"source": [
|
| 383 |
"# create a dataframe with samples where ISCO and ISCO_REL the same\n",
|
| 384 |
"isco_rel_df_same = isco_rel_df[isco_rel_df['ISCO'] == isco_rel_df['ISCO_REL']]\n",
|
|
|
|
| 388 |
},
|
| 389 |
{
|
| 390 |
"cell_type": "code",
|
| 391 |
+
"execution_count": null,
|
| 392 |
"metadata": {},
|
| 393 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
"source": [
|
| 395 |
"# create a dataframe with samples where ISCO and ISCO_REL are different\n",
|
| 396 |
"isco_rel_df_diff = isco_rel_df[isco_rel_df['ISCO'] != isco_rel_df['ISCO_REL']]\n",
|
|
|
|
| 411 |
},
|
| 412 |
{
|
| 413 |
"cell_type": "code",
|
| 414 |
+
"execution_count": null,
|
| 415 |
"metadata": {},
|
| 416 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
"source": [
|
| 418 |
"# Compute the hierarchical accuracy\n",
|
| 419 |
"reliability_results = hierarchical_accuracy.compute(predictions=coder2, references=coder1)\n",
|