Commit
·
5150cc5
1
Parent(s):
519b145
Fix: Copy pure_semantic_search, query_rewriter, redis_cache to backend/hue_portal/core/
Browse files
backend/hue_portal/core/pure_semantic_search.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Pure Semantic Search - 100% vector search with multi-query support.
|
| 3 |
+
|
| 4 |
+
This module implements pure semantic search (no BM25) which is the recommended
|
| 5 |
+
approach when using Query Rewrite Strategy + BGE-M3. All top systems have moved
|
| 6 |
+
away from hybrid search (BM25 + Vector) to pure semantic search since Oct 2025.
|
| 7 |
+
"""
|
| 8 |
+
import logging
|
| 9 |
+
from typing import List, Tuple, Optional, Dict, Any, Set
|
| 10 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 11 |
+
from django.db.models import QuerySet
|
| 12 |
+
|
| 13 |
+
from .embeddings import (
|
| 14 |
+
get_embedding_model,
|
| 15 |
+
generate_embedding,
|
| 16 |
+
cosine_similarity
|
| 17 |
+
)
|
| 18 |
+
from .embedding_utils import load_embedding
|
| 19 |
+
|
| 20 |
+
logger = logging.getLogger(__name__)
|
| 21 |
+
|
| 22 |
+
# Minimum vector score threshold
|
| 23 |
+
DEFAULT_MIN_VECTOR_SCORE = 0.1
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_vector_scores(
|
| 27 |
+
queryset: QuerySet,
|
| 28 |
+
query: str,
|
| 29 |
+
top_k: int = 20
|
| 30 |
+
) -> List[Tuple[Any, float]]:
|
| 31 |
+
"""
|
| 32 |
+
Get vector similarity scores for queryset.
|
| 33 |
+
|
| 34 |
+
This is extracted from hybrid_search.py for use in pure semantic search.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
queryset: Django QuerySet to search.
|
| 38 |
+
query: Search query string.
|
| 39 |
+
top_k: Maximum number of results.
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
List of (object, vector_score) tuples.
|
| 43 |
+
"""
|
| 44 |
+
if not query or not query.strip():
|
| 45 |
+
return []
|
| 46 |
+
|
| 47 |
+
# Generate query embedding
|
| 48 |
+
model = get_embedding_model()
|
| 49 |
+
if model is None:
|
| 50 |
+
return []
|
| 51 |
+
|
| 52 |
+
query_embedding = generate_embedding(query, model=model)
|
| 53 |
+
if query_embedding is None:
|
| 54 |
+
return []
|
| 55 |
+
|
| 56 |
+
# Get all objects with embeddings
|
| 57 |
+
all_objects = list(queryset)
|
| 58 |
+
if not all_objects:
|
| 59 |
+
return []
|
| 60 |
+
|
| 61 |
+
# Check dimension compatibility first
|
| 62 |
+
query_dim = len(query_embedding)
|
| 63 |
+
dimension_mismatch = False
|
| 64 |
+
|
| 65 |
+
# Calculate similarities
|
| 66 |
+
scores = []
|
| 67 |
+
for obj in all_objects:
|
| 68 |
+
obj_embedding = load_embedding(obj)
|
| 69 |
+
if obj_embedding is not None:
|
| 70 |
+
obj_dim = len(obj_embedding)
|
| 71 |
+
if obj_dim != query_dim:
|
| 72 |
+
# Dimension mismatch - skip vector search for this object
|
| 73 |
+
if not dimension_mismatch:
|
| 74 |
+
logger.warning(
|
| 75 |
+
f"Dimension mismatch: query={query_dim}, stored={obj_dim}. Skipping vector search."
|
| 76 |
+
)
|
| 77 |
+
dimension_mismatch = True
|
| 78 |
+
continue
|
| 79 |
+
similarity = cosine_similarity(query_embedding, obj_embedding)
|
| 80 |
+
if similarity >= DEFAULT_MIN_VECTOR_SCORE:
|
| 81 |
+
scores.append((obj, similarity))
|
| 82 |
+
|
| 83 |
+
# If dimension mismatch detected, return empty
|
| 84 |
+
if dimension_mismatch and not scores:
|
| 85 |
+
return []
|
| 86 |
+
|
| 87 |
+
# Sort by score descending
|
| 88 |
+
scores.sort(key=lambda x: x[1], reverse=True)
|
| 89 |
+
return scores[:top_k * 2] # Get more for merging with other queries
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def calculate_exact_match_boost(obj: Any, query: str, text_fields: List[str]) -> float:
|
| 93 |
+
"""
|
| 94 |
+
Calculate boost score for exact keyword matches in title/name fields.
|
| 95 |
+
|
| 96 |
+
This ensures exact matches are prioritized even in pure semantic search.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
obj: Django model instance.
|
| 100 |
+
query: Search query string.
|
| 101 |
+
text_fields: List of field names to check (first 2 are usually title/name).
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
Boost score (0.0 to 1.0).
|
| 105 |
+
"""
|
| 106 |
+
if not query or not text_fields:
|
| 107 |
+
return 0.0
|
| 108 |
+
|
| 109 |
+
query_lower = query.lower().strip()
|
| 110 |
+
# Extract key phrases (2-3 word combinations) from query
|
| 111 |
+
query_words = query_lower.split()
|
| 112 |
+
key_phrases = []
|
| 113 |
+
for i in range(len(query_words) - 1):
|
| 114 |
+
phrase = " ".join(query_words[i:i+2])
|
| 115 |
+
if len(phrase) > 3:
|
| 116 |
+
key_phrases.append(phrase)
|
| 117 |
+
for i in range(len(query_words) - 2):
|
| 118 |
+
phrase = " ".join(query_words[i:i+3])
|
| 119 |
+
if len(phrase) > 5:
|
| 120 |
+
key_phrases.append(phrase)
|
| 121 |
+
|
| 122 |
+
# Also add individual words (longer than 2 chars)
|
| 123 |
+
query_words_set = set(word for word in query_words if len(word) > 2)
|
| 124 |
+
|
| 125 |
+
boost = 0.0
|
| 126 |
+
|
| 127 |
+
# Check primary fields (title, name) for exact matches
|
| 128 |
+
# First 2 fields are usually title/name
|
| 129 |
+
for field in text_fields[:2]:
|
| 130 |
+
if hasattr(obj, field):
|
| 131 |
+
field_value = str(getattr(obj, field, "")).lower()
|
| 132 |
+
if field_value:
|
| 133 |
+
# Check for key phrases first (highest priority)
|
| 134 |
+
for phrase in key_phrases:
|
| 135 |
+
if phrase in field_value:
|
| 136 |
+
# Major boost for phrase match
|
| 137 |
+
boost += 0.5
|
| 138 |
+
# Extra boost if it's the exact field value
|
| 139 |
+
if field_value.strip() == phrase.strip():
|
| 140 |
+
boost += 0.3
|
| 141 |
+
|
| 142 |
+
# Check for full query match
|
| 143 |
+
if query_lower in field_value:
|
| 144 |
+
boost += 0.4
|
| 145 |
+
|
| 146 |
+
# Count matched individual words
|
| 147 |
+
matched_words = sum(1 for word in query_words_set if word in field_value)
|
| 148 |
+
if matched_words > 0:
|
| 149 |
+
# Moderate boost for word matches
|
| 150 |
+
boost += 0.1 * min(matched_words, 3) # Cap at 3 words
|
| 151 |
+
|
| 152 |
+
return min(boost, 1.0) # Cap at 1.0 for very strong matches
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def parallel_vector_search(
|
| 156 |
+
queries: List[str],
|
| 157 |
+
queryset: QuerySet,
|
| 158 |
+
top_k_per_query: int = 5,
|
| 159 |
+
final_top_k: int = 7,
|
| 160 |
+
text_fields: Optional[List[str]] = None
|
| 161 |
+
) -> List[Tuple[Any, float]]:
|
| 162 |
+
"""
|
| 163 |
+
Search with multiple queries in parallel, then merge results.
|
| 164 |
+
|
| 165 |
+
This is the core of Query Rewrite Strategy - run multiple vector searches
|
| 166 |
+
in parallel and merge results to get the best documents.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
queries: List of rewritten queries (3-5 queries from Query Rewrite).
|
| 170 |
+
queryset: Django QuerySet to search.
|
| 171 |
+
top_k_per_query: Top K results per query (default: 5).
|
| 172 |
+
final_top_k: Final top K results after merging (default: 7).
|
| 173 |
+
text_fields: Optional list of field names for exact match boost.
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
List of (object, combined_score) tuples, sorted by score descending.
|
| 177 |
+
|
| 178 |
+
Example:
|
| 179 |
+
queries = [
|
| 180 |
+
"nội dung điều 12",
|
| 181 |
+
"quy định điều 12",
|
| 182 |
+
"điều 12 quy định về"
|
| 183 |
+
]
|
| 184 |
+
results = parallel_vector_search(queries, LegalSection.objects.all())
|
| 185 |
+
# Returns top 7 sections with highest combined scores
|
| 186 |
+
"""
|
| 187 |
+
if not queries or not queries[0].strip():
|
| 188 |
+
return []
|
| 189 |
+
|
| 190 |
+
if len(queries) == 1:
|
| 191 |
+
# Single query - use direct vector search
|
| 192 |
+
return _single_query_search(queries[0], queryset, top_k=final_top_k, text_fields=text_fields)
|
| 193 |
+
|
| 194 |
+
# Multiple queries - run in parallel
|
| 195 |
+
all_results: Dict[Any, float] = {} # object -> max_score
|
| 196 |
+
|
| 197 |
+
# Use ThreadPoolExecutor for parallel searches
|
| 198 |
+
with ThreadPoolExecutor(max_workers=min(len(queries), 5)) as executor:
|
| 199 |
+
# Submit all searches
|
| 200 |
+
future_to_query = {
|
| 201 |
+
executor.submit(get_vector_scores, queryset, query, top_k=top_k_per_query): query
|
| 202 |
+
for query in queries
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
# Collect results as they complete
|
| 206 |
+
for future in as_completed(future_to_query):
|
| 207 |
+
query = future_to_query[future]
|
| 208 |
+
try:
|
| 209 |
+
results = future.result()
|
| 210 |
+
# Merge results: use max score for each object
|
| 211 |
+
for obj, score in results:
|
| 212 |
+
if obj in all_results:
|
| 213 |
+
# Keep the maximum score from all queries
|
| 214 |
+
all_results[obj] = max(all_results[obj], score)
|
| 215 |
+
else:
|
| 216 |
+
all_results[obj] = score
|
| 217 |
+
except Exception as e:
|
| 218 |
+
logger.warning(f"[PARALLEL_SEARCH] Error searching with query '{query}': {e}")
|
| 219 |
+
|
| 220 |
+
# Apply exact match boost if text_fields provided
|
| 221 |
+
if text_fields:
|
| 222 |
+
boosted_results = []
|
| 223 |
+
for obj, score in all_results.items():
|
| 224 |
+
boost = calculate_exact_match_boost(obj, queries[0], text_fields) # Use first query for boost
|
| 225 |
+
# Combine vector score with exact match boost (weighted)
|
| 226 |
+
combined_score = score * 0.8 + boost * 0.2 # 80% vector, 20% exact match
|
| 227 |
+
boosted_results.append((obj, combined_score))
|
| 228 |
+
all_results_list = boosted_results
|
| 229 |
+
else:
|
| 230 |
+
all_results_list = list(all_results.items())
|
| 231 |
+
|
| 232 |
+
# Sort by score descending
|
| 233 |
+
all_results_list.sort(key=lambda x: x[1], reverse=True)
|
| 234 |
+
|
| 235 |
+
return all_results_list[:final_top_k]
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def _single_query_search(
|
| 239 |
+
query: str,
|
| 240 |
+
queryset: QuerySet,
|
| 241 |
+
top_k: int = 20,
|
| 242 |
+
text_fields: Optional[List[str]] = None
|
| 243 |
+
) -> List[Tuple[Any, float]]:
|
| 244 |
+
"""
|
| 245 |
+
Single query vector search with exact match boost.
|
| 246 |
+
|
| 247 |
+
Args:
|
| 248 |
+
query: Search query string.
|
| 249 |
+
queryset: Django QuerySet to search.
|
| 250 |
+
top_k: Maximum number of results.
|
| 251 |
+
text_fields: Optional list of field names for exact match boost.
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
List of (object, score) tuples, sorted by score descending.
|
| 255 |
+
"""
|
| 256 |
+
# Get vector scores
|
| 257 |
+
vector_results = get_vector_scores(queryset, query, top_k=top_k)
|
| 258 |
+
|
| 259 |
+
if not text_fields:
|
| 260 |
+
return vector_results[:top_k]
|
| 261 |
+
|
| 262 |
+
# Apply exact match boost
|
| 263 |
+
boosted_results = []
|
| 264 |
+
for obj, score in vector_results:
|
| 265 |
+
boost = calculate_exact_match_boost(obj, query, text_fields)
|
| 266 |
+
# Combine vector score with exact match boost (weighted)
|
| 267 |
+
combined_score = score * 0.8 + boost * 0.2 # 80% vector, 20% exact match
|
| 268 |
+
boosted_results.append((obj, combined_score))
|
| 269 |
+
|
| 270 |
+
# Sort by combined score
|
| 271 |
+
boosted_results.sort(key=lambda x: x[1], reverse=True)
|
| 272 |
+
return boosted_results[:top_k]
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def pure_semantic_search(
|
| 276 |
+
queries: List[str],
|
| 277 |
+
queryset: QuerySet,
|
| 278 |
+
top_k: int = 20,
|
| 279 |
+
text_fields: Optional[List[str]] = None
|
| 280 |
+
) -> List[Any]:
|
| 281 |
+
"""
|
| 282 |
+
Pure semantic search (100% vector, no BM25).
|
| 283 |
+
|
| 284 |
+
This is the recommended search strategy when using Query Rewrite + BGE-M3.
|
| 285 |
+
All top systems have moved away from hybrid search to pure semantic since Oct 2025.
|
| 286 |
+
|
| 287 |
+
Args:
|
| 288 |
+
queries: List of queries (1 query or 3-5 queries from Query Rewrite).
|
| 289 |
+
queryset: Django QuerySet to search.
|
| 290 |
+
top_k: Maximum number of results.
|
| 291 |
+
text_fields: Optional list of field names for exact match boost.
|
| 292 |
+
|
| 293 |
+
Returns:
|
| 294 |
+
List of objects sorted by score (highest first).
|
| 295 |
+
|
| 296 |
+
Usage:
|
| 297 |
+
# Single query
|
| 298 |
+
results = pure_semantic_search(["mức phạt vi phạm"], queryset, top_k=20)
|
| 299 |
+
|
| 300 |
+
# Multiple queries (from Query Rewrite)
|
| 301 |
+
rewritten_queries = query_rewriter.rewrite_query("mức phạt vi phạm")
|
| 302 |
+
results = pure_semantic_search(rewritten_queries, queryset, top_k=20)
|
| 303 |
+
"""
|
| 304 |
+
if not queries:
|
| 305 |
+
return []
|
| 306 |
+
|
| 307 |
+
if len(queries) == 1:
|
| 308 |
+
# Single query - direct search
|
| 309 |
+
results = _single_query_search(queries[0], queryset, top_k=top_k, text_fields=text_fields)
|
| 310 |
+
else:
|
| 311 |
+
# Multiple queries - parallel search
|
| 312 |
+
results = parallel_vector_search(
|
| 313 |
+
queries,
|
| 314 |
+
queryset,
|
| 315 |
+
top_k_per_query=max(5, top_k // len(queries)),
|
| 316 |
+
final_top_k=top_k,
|
| 317 |
+
text_fields=text_fields
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
# Return just the objects (without scores)
|
| 321 |
+
return [obj for obj, _ in results]
|
| 322 |
+
|
backend/hue_portal/core/query_rewriter.py
ADDED
|
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Query Rewriter - Rewrite user queries into 3-5 optimized legal queries.
|
| 3 |
+
|
| 4 |
+
This module implements the Query Rewrite Strategy - the "best practice" approach
|
| 5 |
+
used by top legal RAG systems in 2025, achieving >99.9% accuracy.
|
| 6 |
+
"""
|
| 7 |
+
import os
|
| 8 |
+
import logging
|
| 9 |
+
import hashlib
|
| 10 |
+
import json
|
| 11 |
+
from typing import List, Dict, Any, Optional
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class QueryRewriter:
|
| 17 |
+
"""
|
| 18 |
+
Rewrite user queries into 3-5 optimized legal queries for better search results.
|
| 19 |
+
|
| 20 |
+
This is the core of Query Rewrite Strategy - instead of using LLM to suggest
|
| 21 |
+
documents (which can hallucinate), we rewrite the query into multiple variations
|
| 22 |
+
and use pure vector search to find the best documents.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
def __init__(self, llm_generator=None, use_cache: bool = True):
|
| 26 |
+
"""
|
| 27 |
+
Initialize Query Rewriter.
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
llm_generator: Optional LLMGenerator instance. If None, will get from llm_integration.
|
| 31 |
+
use_cache: Whether to use Redis cache for query rewrites (default: True).
|
| 32 |
+
"""
|
| 33 |
+
if llm_generator is None:
|
| 34 |
+
try:
|
| 35 |
+
from hue_portal.chatbot.llm_integration import get_llm_generator
|
| 36 |
+
self.llm_generator = get_llm_generator()
|
| 37 |
+
except Exception as e:
|
| 38 |
+
logger.warning(f"[QUERY_REWRITER] Failed to get LLM generator: {e}")
|
| 39 |
+
self.llm_generator = None
|
| 40 |
+
else:
|
| 41 |
+
self.llm_generator = llm_generator
|
| 42 |
+
|
| 43 |
+
# Initialize Redis cache if available
|
| 44 |
+
self.use_cache = use_cache
|
| 45 |
+
self.cache = None
|
| 46 |
+
if self.use_cache:
|
| 47 |
+
try:
|
| 48 |
+
from hue_portal.core.redis_cache import get_redis_cache
|
| 49 |
+
self.cache = get_redis_cache()
|
| 50 |
+
if not self.cache.is_available():
|
| 51 |
+
logger.info("[QUERY_REWRITER] Redis cache not available, caching disabled")
|
| 52 |
+
self.cache = None
|
| 53 |
+
except Exception as e:
|
| 54 |
+
logger.warning(f"[QUERY_REWRITER] Failed to initialize cache: {e}")
|
| 55 |
+
self.cache = None
|
| 56 |
+
|
| 57 |
+
def rewrite_query(
|
| 58 |
+
self,
|
| 59 |
+
user_query: str,
|
| 60 |
+
context: Optional[List[Dict[str, str]]] = None,
|
| 61 |
+
max_queries: int = 5,
|
| 62 |
+
min_queries: int = 3
|
| 63 |
+
) -> List[str]:
|
| 64 |
+
"""
|
| 65 |
+
Rewrite a user query into 3-5 optimized legal queries.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
user_query: Original user query string.
|
| 69 |
+
context: Optional conversation context (list of {role, content} dicts).
|
| 70 |
+
max_queries: Maximum number of queries to generate (default: 5).
|
| 71 |
+
min_queries: Minimum number of queries to generate (default: 3).
|
| 72 |
+
|
| 73 |
+
Returns:
|
| 74 |
+
List of rewritten queries (3-5 queries).
|
| 75 |
+
|
| 76 |
+
Examples:
|
| 77 |
+
Input: "điều 12 nói gì"
|
| 78 |
+
Output: [
|
| 79 |
+
"nội dung điều 12",
|
| 80 |
+
"quy định điều 12",
|
| 81 |
+
"điều 12 quy định về",
|
| 82 |
+
"điều 12 quy định gì",
|
| 83 |
+
"điều 12 quy định như thế nào"
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
Input: "mức phạt vi phạm"
|
| 87 |
+
Output: [
|
| 88 |
+
"mức phạt vi phạm",
|
| 89 |
+
"khung hình phạt",
|
| 90 |
+
"mức xử phạt",
|
| 91 |
+
"phạt vi phạm",
|
| 92 |
+
"xử phạt vi phạm"
|
| 93 |
+
]
|
| 94 |
+
"""
|
| 95 |
+
if not user_query or not user_query.strip():
|
| 96 |
+
return []
|
| 97 |
+
|
| 98 |
+
user_query = user_query.strip()
|
| 99 |
+
|
| 100 |
+
# Check cache first
|
| 101 |
+
if self.cache and self.cache.is_available():
|
| 102 |
+
cache_key = f"query_rewrite:{self.get_cache_key(user_query, context=context)}"
|
| 103 |
+
cached_queries = self.cache.get(cache_key)
|
| 104 |
+
if cached_queries and isinstance(cached_queries, list):
|
| 105 |
+
logger.info(f"[QUERY_REWRITER] ✅ Cache hit for query rewrite")
|
| 106 |
+
return cached_queries[:max_queries]
|
| 107 |
+
|
| 108 |
+
# Try LLM-based rewrite first
|
| 109 |
+
if self.llm_generator and self.llm_generator.is_available():
|
| 110 |
+
try:
|
| 111 |
+
rewritten = self._rewrite_with_llm(
|
| 112 |
+
user_query,
|
| 113 |
+
context=context,
|
| 114 |
+
max_queries=max_queries,
|
| 115 |
+
min_queries=min_queries
|
| 116 |
+
)
|
| 117 |
+
if rewritten and len(rewritten) >= min_queries:
|
| 118 |
+
logger.info(f"[QUERY_REWRITER] ✅ LLM rewrite: {len(rewritten)} queries")
|
| 119 |
+
final_queries = rewritten[:max_queries]
|
| 120 |
+
|
| 121 |
+
# Cache the result
|
| 122 |
+
if self.cache and self.cache.is_available():
|
| 123 |
+
cache_key = f"query_rewrite:{self.get_cache_key(user_query, context=context)}"
|
| 124 |
+
self.cache.set(cache_key, final_queries, ttl_seconds=CACHE_QUERY_REWRITE_TTL)
|
| 125 |
+
logger.debug(f"[QUERY_REWRITER] Cached query rewrite (TTL: {CACHE_QUERY_REWRITE_TTL}s)")
|
| 126 |
+
|
| 127 |
+
return final_queries
|
| 128 |
+
except Exception as e:
|
| 129 |
+
logger.warning(f"[QUERY_REWRITER] LLM rewrite failed: {e}, using fallback")
|
| 130 |
+
|
| 131 |
+
# Fallback to rule-based rewrite
|
| 132 |
+
return self._rewrite_fallback(user_query, max_queries=max_queries, min_queries=min_queries)
|
| 133 |
+
|
| 134 |
+
def _rewrite_with_llm(
|
| 135 |
+
self,
|
| 136 |
+
user_query: str,
|
| 137 |
+
context: Optional[List[Dict[str, str]]] = None,
|
| 138 |
+
max_queries: int = 5,
|
| 139 |
+
min_queries: int = 3
|
| 140 |
+
) -> List[str]:
|
| 141 |
+
"""
|
| 142 |
+
Rewrite query using LLM.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
user_query: Original user query.
|
| 146 |
+
context: Optional conversation context.
|
| 147 |
+
max_queries: Maximum queries to generate.
|
| 148 |
+
min_queries: Minimum queries to generate.
|
| 149 |
+
|
| 150 |
+
Returns:
|
| 151 |
+
List of rewritten queries.
|
| 152 |
+
"""
|
| 153 |
+
# Build context summary
|
| 154 |
+
context_text = ""
|
| 155 |
+
if context:
|
| 156 |
+
recent_user_messages = [
|
| 157 |
+
msg.get("content", "")
|
| 158 |
+
for msg in context[-3:] # Last 3 messages
|
| 159 |
+
if msg.get("role") == "user"
|
| 160 |
+
]
|
| 161 |
+
if recent_user_messages:
|
| 162 |
+
context_text = " ".join(recent_user_messages)
|
| 163 |
+
|
| 164 |
+
# Build prompt for query rewriting
|
| 165 |
+
prompt = (
|
| 166 |
+
"Bạn là trợ lý pháp luật chuyên nghiệp. Nhiệm vụ của bạn là viết lại câu hỏi của người dùng "
|
| 167 |
+
"thành {max_queries} câu hỏi chuẩn pháp lý tối ưu nhất để tìm kiếm trong cơ sở dữ liệu văn bản pháp luật.\n\n"
|
| 168 |
+
"Câu hỏi gốc: \"{user_query}\"\n\n"
|
| 169 |
+
"{context_section}"
|
| 170 |
+
"Yêu cầu:\n"
|
| 171 |
+
"1. Viết lại thành {max_queries} câu hỏi khác nhau, mỗi câu hỏi tập trung vào một khía cạnh của vấn đề\n"
|
| 172 |
+
"2. Sử dụng thuật ngữ pháp lý chuẩn (ví dụ: 'quy định', 'điều', 'khoản', 'mức phạt', 'khung hình phạt')\n"
|
| 173 |
+
"3. Các câu hỏi nên bao quát nhiều cách diễn đạt khác nhau của cùng một vấn đề\n"
|
| 174 |
+
"4. Giữ nguyên ý nghĩa chính của câu hỏi gốc\n"
|
| 175 |
+
"5. Mỗi câu hỏi nên ngắn gọn, rõ ràng (10-20 từ)\n\n"
|
| 176 |
+
"Trả về JSON với dạng:\n"
|
| 177 |
+
"{{\n"
|
| 178 |
+
' "queries": ["câu hỏi 1", "câu hỏi 2", "câu hỏi 3", ...]\n'
|
| 179 |
+
"}}\n"
|
| 180 |
+
"Chỉ in JSON, không thêm lời giải thích khác."
|
| 181 |
+
).format(
|
| 182 |
+
max_queries=max_queries,
|
| 183 |
+
user_query=user_query,
|
| 184 |
+
context_section=(
|
| 185 |
+
f"Ngữ cảnh cuộc hội thoại: {context_text}\n\n"
|
| 186 |
+
if context_text else ""
|
| 187 |
+
)
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# Generate with LLM
|
| 191 |
+
raw = self.llm_generator._generate_from_prompt(prompt)
|
| 192 |
+
if not raw:
|
| 193 |
+
return []
|
| 194 |
+
|
| 195 |
+
# Parse JSON response
|
| 196 |
+
parsed = self.llm_generator._extract_json_payload(raw)
|
| 197 |
+
if not parsed:
|
| 198 |
+
return []
|
| 199 |
+
|
| 200 |
+
queries = parsed.get("queries") or []
|
| 201 |
+
if not isinstance(queries, list):
|
| 202 |
+
return []
|
| 203 |
+
|
| 204 |
+
# Filter and validate queries
|
| 205 |
+
valid_queries = []
|
| 206 |
+
for q in queries:
|
| 207 |
+
if isinstance(q, str):
|
| 208 |
+
q = q.strip()
|
| 209 |
+
if q and len(q) > 3: # Minimum length
|
| 210 |
+
valid_queries.append(q)
|
| 211 |
+
|
| 212 |
+
# Ensure we have at least min_queries
|
| 213 |
+
if len(valid_queries) < min_queries:
|
| 214 |
+
# Add original query if not already present
|
| 215 |
+
if user_query not in valid_queries:
|
| 216 |
+
valid_queries.insert(0, user_query)
|
| 217 |
+
|
| 218 |
+
# Generate additional variations using fallback
|
| 219 |
+
fallback_queries = self._rewrite_fallback(
|
| 220 |
+
user_query,
|
| 221 |
+
max_queries=max_queries - len(valid_queries),
|
| 222 |
+
min_queries=0
|
| 223 |
+
)
|
| 224 |
+
valid_queries.extend(fallback_queries)
|
| 225 |
+
|
| 226 |
+
# Remove duplicates while preserving order
|
| 227 |
+
seen = set()
|
| 228 |
+
unique_queries = []
|
| 229 |
+
for q in valid_queries:
|
| 230 |
+
q_lower = q.lower()
|
| 231 |
+
if q_lower not in seen:
|
| 232 |
+
seen.add(q_lower)
|
| 233 |
+
unique_queries.append(q)
|
| 234 |
+
|
| 235 |
+
return unique_queries[:max_queries]
|
| 236 |
+
|
| 237 |
+
def _rewrite_fallback(
|
| 238 |
+
self,
|
| 239 |
+
user_query: str,
|
| 240 |
+
max_queries: int = 5,
|
| 241 |
+
min_queries: int = 3
|
| 242 |
+
) -> List[str]:
|
| 243 |
+
"""
|
| 244 |
+
Fallback rule-based query rewriting.
|
| 245 |
+
|
| 246 |
+
This generates query variations using simple patterns when LLM is not available.
|
| 247 |
+
|
| 248 |
+
Args:
|
| 249 |
+
user_query: Original user query.
|
| 250 |
+
max_queries: Maximum queries to generate.
|
| 251 |
+
min_queries: Minimum queries to generate.
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
List of rewritten queries.
|
| 255 |
+
"""
|
| 256 |
+
queries = [user_query] # Always include original
|
| 257 |
+
|
| 258 |
+
query_lower = user_query.lower()
|
| 259 |
+
query_words = query_lower.split()
|
| 260 |
+
|
| 261 |
+
# Pattern 1: Add "quy định" if not present
|
| 262 |
+
if "quy định" not in query_lower and "quy định" not in query_lower:
|
| 263 |
+
if len(query_words) > 1:
|
| 264 |
+
queries.append(f"quy định {user_query}")
|
| 265 |
+
queries.append(f"{user_query} quy định")
|
| 266 |
+
|
| 267 |
+
# Pattern 2: Add "nội dung" for "điều" queries
|
| 268 |
+
if "điều" in query_lower:
|
| 269 |
+
# Extract điều number if possible
|
| 270 |
+
for word in query_words:
|
| 271 |
+
if "điều" in word.lower():
|
| 272 |
+
idx = query_words.index(word)
|
| 273 |
+
if idx + 1 < len(query_words):
|
| 274 |
+
next_word = query_words[idx + 1]
|
| 275 |
+
queries.append(f"nội dung điều {next_word}")
|
| 276 |
+
queries.append(f"quy định điều {next_word}")
|
| 277 |
+
break
|
| 278 |
+
|
| 279 |
+
# Pattern 3: Add "mức phạt" variations for fine-related queries
|
| 280 |
+
if any(kw in query_lower for kw in ["phạt", "vi phạm", "xử phạt"]):
|
| 281 |
+
if "mức phạt" not in query_lower:
|
| 282 |
+
queries.append(f"mức phạt {user_query}")
|
| 283 |
+
if "khung hình phạt" not in query_lower:
|
| 284 |
+
queries.append(f"khung hình phạt {user_query}")
|
| 285 |
+
|
| 286 |
+
# Pattern 4: Add "thủ tục" variations for procedure queries
|
| 287 |
+
if any(kw in query_lower for kw in ["thủ tục", "hồ sơ", "giấy tờ"]):
|
| 288 |
+
if "thủ tục" not in query_lower:
|
| 289 |
+
queries.append(f"thủ tục {user_query}")
|
| 290 |
+
|
| 291 |
+
# Remove duplicates while preserving order
|
| 292 |
+
seen = set()
|
| 293 |
+
unique_queries = []
|
| 294 |
+
for q in queries:
|
| 295 |
+
q_lower = q.lower()
|
| 296 |
+
if q_lower not in seen:
|
| 297 |
+
seen.add(q_lower)
|
| 298 |
+
unique_queries.append(q)
|
| 299 |
+
|
| 300 |
+
# Ensure minimum queries
|
| 301 |
+
while len(unique_queries) < min_queries:
|
| 302 |
+
# Add simple variations
|
| 303 |
+
if len(query_words) > 1:
|
| 304 |
+
# Reverse word order
|
| 305 |
+
reversed_query = " ".join(reversed(query_words))
|
| 306 |
+
if reversed_query.lower() not in seen:
|
| 307 |
+
unique_queries.append(reversed_query)
|
| 308 |
+
seen.add(reversed_query.lower())
|
| 309 |
+
else:
|
| 310 |
+
break
|
| 311 |
+
|
| 312 |
+
return unique_queries[:max_queries]
|
| 313 |
+
|
| 314 |
+
def get_cache_key(self, user_query: str, context: Optional[List[Dict[str, str]]] = None) -> str:
|
| 315 |
+
"""
|
| 316 |
+
Generate cache key for query rewrite.
|
| 317 |
+
|
| 318 |
+
Args:
|
| 319 |
+
user_query: Original user query.
|
| 320 |
+
context: Optional conversation context.
|
| 321 |
+
|
| 322 |
+
Returns:
|
| 323 |
+
Cache key string.
|
| 324 |
+
"""
|
| 325 |
+
# Create hash from query and context
|
| 326 |
+
cache_data = {
|
| 327 |
+
"query": user_query.strip().lower(),
|
| 328 |
+
"context": [
|
| 329 |
+
{"role": msg.get("role"), "content": msg.get("content", "")[:100]}
|
| 330 |
+
for msg in (context or [])[-3:] # Last 3 messages only
|
| 331 |
+
]
|
| 332 |
+
}
|
| 333 |
+
cache_str = json.dumps(cache_data, sort_keys=True, ensure_ascii=False)
|
| 334 |
+
return hashlib.sha256(cache_str.encode("utf-8")).hexdigest()
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def get_query_rewriter(llm_generator=None) -> QueryRewriter:
|
| 338 |
+
"""
|
| 339 |
+
Get or create QueryRewriter instance.
|
| 340 |
+
|
| 341 |
+
Args:
|
| 342 |
+
llm_generator: Optional LLMGenerator instance.
|
| 343 |
+
|
| 344 |
+
Returns:
|
| 345 |
+
QueryRewriter instance.
|
| 346 |
+
"""
|
| 347 |
+
return QueryRewriter(llm_generator=llm_generator)
|
| 348 |
+
|
backend/hue_portal/core/redis_cache.py
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Redis Cache Layer for Query Rewrite and Prefetch Results.
|
| 3 |
+
|
| 4 |
+
This module provides Redis caching for:
|
| 5 |
+
- Query rewrite results (1000 queries, TTL 1 hour)
|
| 6 |
+
- Prefetch results by document_code (TTL 30 minutes)
|
| 7 |
+
|
| 8 |
+
Supports Upstash and Railway Redis free tier.
|
| 9 |
+
"""
|
| 10 |
+
import os
|
| 11 |
+
import logging
|
| 12 |
+
import json
|
| 13 |
+
from typing import Optional, Dict, Any, List
|
| 14 |
+
from datetime import timedelta
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
# Try to import redis
|
| 19 |
+
try:
|
| 20 |
+
import redis
|
| 21 |
+
REDIS_AVAILABLE = True
|
| 22 |
+
except ImportError:
|
| 23 |
+
REDIS_AVAILABLE = False
|
| 24 |
+
logger.warning("[REDIS] redis package not installed. Install with: pip install redis")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class RedisCache:
|
| 28 |
+
"""
|
| 29 |
+
Redis cache manager for query rewrites and prefetch results.
|
| 30 |
+
|
| 31 |
+
Supports graceful degradation if Redis is unavailable.
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
def __init__(self, redis_url: Optional[str] = None):
|
| 35 |
+
"""
|
| 36 |
+
Initialize Redis cache.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
redis_url: Redis connection URL. If None, reads from REDIS_URL env var.
|
| 40 |
+
"""
|
| 41 |
+
self.redis_url = redis_url or os.environ.get("REDIS_URL")
|
| 42 |
+
self.client: Optional[redis.Redis] = None
|
| 43 |
+
self._connected = False
|
| 44 |
+
|
| 45 |
+
if not REDIS_AVAILABLE:
|
| 46 |
+
logger.warning("[REDIS] Redis package not available, caching disabled")
|
| 47 |
+
return
|
| 48 |
+
|
| 49 |
+
if not self.redis_url:
|
| 50 |
+
logger.warning("[REDIS] REDIS_URL not configured, caching disabled")
|
| 51 |
+
return
|
| 52 |
+
|
| 53 |
+
self._connect()
|
| 54 |
+
|
| 55 |
+
def _connect(self) -> None:
|
| 56 |
+
"""Connect to Redis server."""
|
| 57 |
+
if not REDIS_AVAILABLE or not self.redis_url:
|
| 58 |
+
return
|
| 59 |
+
|
| 60 |
+
try:
|
| 61 |
+
# Parse Redis URL
|
| 62 |
+
# Format: redis://[:password@]host[:port][/db]
|
| 63 |
+
# Or: rediss:// for SSL
|
| 64 |
+
self.client = redis.from_url(
|
| 65 |
+
self.redis_url,
|
| 66 |
+
decode_responses=True, # Auto-decode strings
|
| 67 |
+
socket_connect_timeout=5,
|
| 68 |
+
socket_timeout=5,
|
| 69 |
+
retry_on_timeout=True,
|
| 70 |
+
health_check_interval=30
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Test connection
|
| 74 |
+
self.client.ping()
|
| 75 |
+
self._connected = True
|
| 76 |
+
logger.info("[REDIS] ✅ Connected to Redis successfully")
|
| 77 |
+
except Exception as e:
|
| 78 |
+
logger.warning(f"[REDIS] Failed to connect to Redis: {e}, caching disabled")
|
| 79 |
+
self.client = None
|
| 80 |
+
self._connected = False
|
| 81 |
+
|
| 82 |
+
def is_available(self) -> bool:
|
| 83 |
+
"""Check if Redis is available and connected."""
|
| 84 |
+
if not self._connected or not self.client:
|
| 85 |
+
return False
|
| 86 |
+
|
| 87 |
+
try:
|
| 88 |
+
self.client.ping()
|
| 89 |
+
return True
|
| 90 |
+
except Exception:
|
| 91 |
+
self._connected = False
|
| 92 |
+
return False
|
| 93 |
+
|
| 94 |
+
def get(self, key: str) -> Optional[Any]:
|
| 95 |
+
"""
|
| 96 |
+
Get value from cache.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
key: Cache key.
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
Cached value or None if not found.
|
| 103 |
+
"""
|
| 104 |
+
if not self.is_available():
|
| 105 |
+
return None
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
value = self.client.get(key)
|
| 109 |
+
if value is None:
|
| 110 |
+
return None
|
| 111 |
+
|
| 112 |
+
# Try to parse as JSON
|
| 113 |
+
try:
|
| 114 |
+
return json.loads(value)
|
| 115 |
+
except (json.JSONDecodeError, TypeError):
|
| 116 |
+
# Return as string if not JSON
|
| 117 |
+
return value
|
| 118 |
+
except Exception as e:
|
| 119 |
+
logger.warning(f"[REDIS] Error getting key '{key}': {e}")
|
| 120 |
+
return None
|
| 121 |
+
|
| 122 |
+
def set(
|
| 123 |
+
self,
|
| 124 |
+
key: str,
|
| 125 |
+
value: Any,
|
| 126 |
+
ttl_seconds: Optional[int] = None
|
| 127 |
+
) -> bool:
|
| 128 |
+
"""
|
| 129 |
+
Set value in cache.
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
key: Cache key.
|
| 133 |
+
value: Value to cache (will be JSON-encoded if dict/list).
|
| 134 |
+
ttl_seconds: Time to live in seconds. If None, no expiration.
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
True if successful, False otherwise.
|
| 138 |
+
"""
|
| 139 |
+
if not self.is_available():
|
| 140 |
+
return False
|
| 141 |
+
|
| 142 |
+
try:
|
| 143 |
+
# Serialize value to JSON if it's a dict/list
|
| 144 |
+
if isinstance(value, (dict, list)):
|
| 145 |
+
serialized = json.dumps(value, ensure_ascii=False)
|
| 146 |
+
else:
|
| 147 |
+
serialized = str(value)
|
| 148 |
+
|
| 149 |
+
if ttl_seconds:
|
| 150 |
+
self.client.setex(key, ttl_seconds, serialized)
|
| 151 |
+
else:
|
| 152 |
+
self.client.set(key, serialized)
|
| 153 |
+
|
| 154 |
+
return True
|
| 155 |
+
except Exception as e:
|
| 156 |
+
logger.warning(f"[REDIS] Error setting key '{key}': {e}")
|
| 157 |
+
return False
|
| 158 |
+
|
| 159 |
+
def delete(self, key: str) -> bool:
|
| 160 |
+
"""
|
| 161 |
+
Delete key from cache.
|
| 162 |
+
|
| 163 |
+
Args:
|
| 164 |
+
key: Cache key.
|
| 165 |
+
|
| 166 |
+
Returns:
|
| 167 |
+
True if successful, False otherwise.
|
| 168 |
+
"""
|
| 169 |
+
if not self.is_available():
|
| 170 |
+
return False
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
self.client.delete(key)
|
| 174 |
+
return True
|
| 175 |
+
except Exception as e:
|
| 176 |
+
logger.warning(f"[REDIS] Error deleting key '{key}': {e}")
|
| 177 |
+
return False
|
| 178 |
+
|
| 179 |
+
def exists(self, key: str) -> bool:
|
| 180 |
+
"""
|
| 181 |
+
Check if key exists in cache.
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
key: Cache key.
|
| 185 |
+
|
| 186 |
+
Returns:
|
| 187 |
+
True if key exists, False otherwise.
|
| 188 |
+
"""
|
| 189 |
+
if not self.is_available():
|
| 190 |
+
return False
|
| 191 |
+
|
| 192 |
+
try:
|
| 193 |
+
return self.client.exists(key) > 0
|
| 194 |
+
except Exception:
|
| 195 |
+
return False
|
| 196 |
+
|
| 197 |
+
def clear_pattern(self, pattern: str) -> int:
|
| 198 |
+
"""
|
| 199 |
+
Clear all keys matching pattern.
|
| 200 |
+
|
| 201 |
+
Args:
|
| 202 |
+
pattern: Redis key pattern (e.g., "query_rewrite:*").
|
| 203 |
+
|
| 204 |
+
Returns:
|
| 205 |
+
Number of keys deleted.
|
| 206 |
+
"""
|
| 207 |
+
if not self.is_available():
|
| 208 |
+
return 0
|
| 209 |
+
|
| 210 |
+
try:
|
| 211 |
+
keys = self.client.keys(pattern)
|
| 212 |
+
if keys:
|
| 213 |
+
return self.client.delete(*keys)
|
| 214 |
+
return 0
|
| 215 |
+
except Exception as e:
|
| 216 |
+
logger.warning(f"[REDIS] Error clearing pattern '{pattern}': {e}")
|
| 217 |
+
return 0
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
# Singleton instance
|
| 221 |
+
_redis_cache_instance: Optional[RedisCache] = None
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def get_redis_cache(redis_url: Optional[str] = None) -> RedisCache:
|
| 225 |
+
"""
|
| 226 |
+
Get or create Redis cache instance.
|
| 227 |
+
|
| 228 |
+
Args:
|
| 229 |
+
redis_url: Optional Redis URL. If None, uses REDIS_URL env var.
|
| 230 |
+
|
| 231 |
+
Returns:
|
| 232 |
+
RedisCache instance.
|
| 233 |
+
"""
|
| 234 |
+
global _redis_cache_instance
|
| 235 |
+
|
| 236 |
+
if _redis_cache_instance is None:
|
| 237 |
+
_redis_cache_instance = RedisCache(redis_url=redis_url)
|
| 238 |
+
|
| 239 |
+
return _redis_cache_instance
|
| 240 |
+
|