Upload backend/hue_portal/core/chatbot.py with huggingface_hub
Browse files
backend/hue_portal/core/chatbot.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Chatbot with ML-based intent classification for natural language queries.
|
| 3 |
+
"""
|
| 4 |
+
import re
|
| 5 |
+
import unicodedata
|
| 6 |
+
from typing import Dict, List, Tuple, Any, Optional
|
| 7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 8 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 9 |
+
from sklearn.pipeline import Pipeline
|
| 10 |
+
import numpy as np
|
| 11 |
+
from .models import Procedure, Fine, Office, Advisory
|
| 12 |
+
from .search_ml import search_with_ml, expand_query_with_synonyms
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Training data for intent classification
|
| 16 |
+
INTENT_TRAINING_DATA = {
|
| 17 |
+
"search_fine": [
|
| 18 |
+
"mức phạt", "phạt bao nhiêu", "tiền phạt", "vi phạm giao thông",
|
| 19 |
+
"vượt đèn đỏ", "nồng độ cồn", "không đội mũ bảo hiểm",
|
| 20 |
+
"mức phạt là gì", "phạt như thế nào", "hành vi vi phạm",
|
| 21 |
+
"điều luật", "nghị định", "mức xử phạt"
|
| 22 |
+
],
|
| 23 |
+
"search_procedure": [
|
| 24 |
+
"thủ tục", "làm thủ tục", "hồ sơ", "điều kiện",
|
| 25 |
+
"thủ tục cư trú", "thủ tục ANTT", "thủ tục PCCC",
|
| 26 |
+
"cần giấy tờ gì", "làm như thế nào", "quy trình",
|
| 27 |
+
"thời hạn", "lệ phí", "nơi nộp"
|
| 28 |
+
],
|
| 29 |
+
"search_office": [
|
| 30 |
+
"địa chỉ", "điểm tiếp dân", "công an", "phòng ban",
|
| 31 |
+
"số điện thoại", "giờ làm việc", "nơi tiếp nhận",
|
| 32 |
+
"đơn vị nào", "ở đâu", "liên hệ"
|
| 33 |
+
],
|
| 34 |
+
"search_advisory": [
|
| 35 |
+
"cảnh báo", "lừa đảo", "scam", "thủ đoạn",
|
| 36 |
+
"cảnh giác", "an toàn", "bảo mật"
|
| 37 |
+
],
|
| 38 |
+
"general_query": [
|
| 39 |
+
"xin chào", "giúp tôi", "tư vấn", "hỏi",
|
| 40 |
+
"thông tin", "tra cứu", "tìm kiếm"
|
| 41 |
+
]
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Response templates
|
| 45 |
+
RESPONSE_TEMPLATES = {
|
| 46 |
+
"search_fine": "Tôi tìm thấy {count} mức phạt liên quan đến '{query}':",
|
| 47 |
+
"search_procedure": "Tôi tìm thấy {count} thủ tục liên quan đến '{query}':",
|
| 48 |
+
"search_office": "Tôi tìm thấy {count} đơn vị liên quan đến '{query}':",
|
| 49 |
+
"search_advisory": "Tôi tìm thấy {count} cảnh báo liên quan đến '{query}':",
|
| 50 |
+
"general_query": "Tôi có thể giúp bạn tra cứu các văn bản quy định pháp luật về xử lí kỷ luật cán bộ đảng viên. Bạn muốn tìm gì?",
|
| 51 |
+
"no_results": "Xin lỗi, tôi không tìm thấy thông tin liên quan đến '{query}'. Vui lòng thử lại với từ khóa khác.",
|
| 52 |
+
"greeting": "Xin chào! Tôi có thể giúp bạn tra cứu các văn bản quy định pháp luật về xử lí kỷ luật cán bộ đảng viên. Bạn cần tìm gì?",
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class Chatbot:
|
| 57 |
+
def __init__(self):
|
| 58 |
+
self.intent_classifier = None
|
| 59 |
+
self.vectorizer = None
|
| 60 |
+
self._train_classifier()
|
| 61 |
+
|
| 62 |
+
def _train_classifier(self):
|
| 63 |
+
"""Train intent classification model."""
|
| 64 |
+
try:
|
| 65 |
+
# Prepare training data
|
| 66 |
+
texts = []
|
| 67 |
+
labels = []
|
| 68 |
+
|
| 69 |
+
for intent, examples in INTENT_TRAINING_DATA.items():
|
| 70 |
+
for example in examples:
|
| 71 |
+
texts.append(self._preprocess_text(example))
|
| 72 |
+
labels.append(intent)
|
| 73 |
+
|
| 74 |
+
if not texts:
|
| 75 |
+
return
|
| 76 |
+
|
| 77 |
+
# Create and train pipeline
|
| 78 |
+
self.intent_classifier = Pipeline([
|
| 79 |
+
('tfidf', TfidfVectorizer(
|
| 80 |
+
analyzer='word',
|
| 81 |
+
ngram_range=(1, 2),
|
| 82 |
+
min_df=1,
|
| 83 |
+
lowercase=True,
|
| 84 |
+
token_pattern=r'\b\w+\b'
|
| 85 |
+
)),
|
| 86 |
+
('clf', MultinomialNB())
|
| 87 |
+
])
|
| 88 |
+
|
| 89 |
+
self.intent_classifier.fit(texts, labels)
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f"Error training classifier: {e}")
|
| 92 |
+
self.intent_classifier = None
|
| 93 |
+
|
| 94 |
+
def _preprocess_text(self, text: str) -> str:
|
| 95 |
+
"""Preprocess text for classification - keep Vietnamese characters."""
|
| 96 |
+
if not text:
|
| 97 |
+
return ""
|
| 98 |
+
text = text.lower().strip()
|
| 99 |
+
# Only remove punctuation marks, keep all letters (including Vietnamese) and numbers
|
| 100 |
+
# Remove: !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
|
| 101 |
+
text = re.sub(r'[!"#$%&\'()*+,\-./:;<=>?@\[\\\]^_`{|}~]', ' ', text)
|
| 102 |
+
text = re.sub(r'\s+', ' ', text)
|
| 103 |
+
return text.strip()
|
| 104 |
+
|
| 105 |
+
def _remove_accents(self, text: str) -> str:
|
| 106 |
+
"""Remove diacritics for accent-insensitive matching."""
|
| 107 |
+
if not text:
|
| 108 |
+
return ""
|
| 109 |
+
normalized = unicodedata.normalize("NFD", text)
|
| 110 |
+
return "".join(ch for ch in normalized if unicodedata.category(ch) != "Mn")
|
| 111 |
+
|
| 112 |
+
def _keyword_in(self, query_lower: str, query_ascii: str, keyword: str) -> bool:
|
| 113 |
+
"""Check keyword presence in either original or accent-free text."""
|
| 114 |
+
kw_lower = keyword.lower()
|
| 115 |
+
if kw_lower in query_lower:
|
| 116 |
+
return True
|
| 117 |
+
kw_ascii = self._remove_accents(kw_lower)
|
| 118 |
+
return kw_ascii in query_ascii
|
| 119 |
+
|
| 120 |
+
def classify_intent(self, query: str) -> Tuple[str, float]:
|
| 121 |
+
"""
|
| 122 |
+
Classify user intent from query.
|
| 123 |
+
Returns (intent, confidence_score)
|
| 124 |
+
"""
|
| 125 |
+
# Use keyword-based classification first (more reliable for Vietnamese)
|
| 126 |
+
keyword_intent, keyword_confidence = self._keyword_based_intent(query)
|
| 127 |
+
|
| 128 |
+
# ALWAYS use keyword-based for now (more reliable for Vietnamese)
|
| 129 |
+
# Special handling for greeting - only if really simple
|
| 130 |
+
if keyword_intent == "greeting":
|
| 131 |
+
query_lower = query.lower().strip()
|
| 132 |
+
query_ascii = self._remove_accents(query_lower)
|
| 133 |
+
query_words = query_lower.split()
|
| 134 |
+
# Double-check: if query has fine keywords, it's NOT a greeting
|
| 135 |
+
fine_indicators = ["phạt", "mức", "vuot", "vượt", "đèn", "den", "vi phạm", "vi pham"]
|
| 136 |
+
if any(self._keyword_in(query_lower, query_ascii, indicator) for indicator in fine_indicators):
|
| 137 |
+
# Re-check with fine keywords
|
| 138 |
+
for kw in ["mức phạt", "vi phạm", "đèn đỏ", "vượt đèn", "muc phat", "vuot den", "phat", "vuot", "den", "muc"]:
|
| 139 |
+
if self._keyword_in(query_lower, query_ascii, kw):
|
| 140 |
+
return ("search_fine", 0.9)
|
| 141 |
+
# Only return greeting if query is very short (<= 3 words)
|
| 142 |
+
if len(query_words) > 3:
|
| 143 |
+
# If long query classified as greeting, it's probably wrong - use general
|
| 144 |
+
return ("general_query", 0.5)
|
| 145 |
+
|
| 146 |
+
# For all other intents, use keyword-based result
|
| 147 |
+
return (keyword_intent, max(keyword_confidence, 0.8))
|
| 148 |
+
|
| 149 |
+
def _keyword_based_intent(self, query: str) -> Tuple[str, float]:
|
| 150 |
+
"""Fallback keyword-based intent classification."""
|
| 151 |
+
# Use original query (lowercase) to preserve Vietnamese characters
|
| 152 |
+
query_lower = query.lower().strip()
|
| 153 |
+
query_ascii = self._remove_accents(query_lower)
|
| 154 |
+
query_words = query_lower.split()
|
| 155 |
+
|
| 156 |
+
# Check for keywords - prioritize fine-related queries FIRST
|
| 157 |
+
# Check on original query to preserve Vietnamese characters
|
| 158 |
+
# Check longer phrases first, then single words
|
| 159 |
+
fine_keywords = ["mức phạt", "vi phạm", "đèn đỏ", "nồng độ cồn", "mũ bảo hiểm", "tốc độ", "bằng lái", "vượt đèn", "mức phạt vượt"]
|
| 160 |
+
fine_keywords_ascii = [self._remove_accents(kw) for kw in fine_keywords]
|
| 161 |
+
fine_single_words = ["phạt", "vượt", "đèn", "mức", "phat", "vuot", "den"]
|
| 162 |
+
|
| 163 |
+
# Check multi-word keywords first
|
| 164 |
+
has_fine_keywords = False
|
| 165 |
+
for kw, kw_ascii in zip(fine_keywords, fine_keywords_ascii):
|
| 166 |
+
if self._keyword_in(query_lower, query_ascii, kw) or kw_ascii in query_ascii:
|
| 167 |
+
return ("search_fine", 0.95) # Very high confidence
|
| 168 |
+
# Then check single words - check ALL of them, not just first match
|
| 169 |
+
for kw in fine_single_words:
|
| 170 |
+
if self._keyword_in(query_lower, query_ascii, kw):
|
| 171 |
+
has_fine_keywords = True
|
| 172 |
+
# Return immediately if found
|
| 173 |
+
return ("search_fine", 0.9)
|
| 174 |
+
|
| 175 |
+
has_procedure_keywords = any(
|
| 176 |
+
self._keyword_in(query_lower, query_ascii, kw) for kw in
|
| 177 |
+
["thủ tục", "hồ sơ", "điều kiện", "cư trú", "antt", "pccc", "thu tuc", "ho so", "dieu kien", "cu tru"]
|
| 178 |
+
)
|
| 179 |
+
if has_procedure_keywords:
|
| 180 |
+
return ("search_procedure", 0.8)
|
| 181 |
+
|
| 182 |
+
has_office_keywords = any(
|
| 183 |
+
self._keyword_in(query_lower, query_ascii, kw) for kw in
|
| 184 |
+
["địa chỉ", "điểm tiếp dân", "công an", "số điện thoại", "giờ làm việc", "dia chi", "diem tiep dan", "cong an", "so dien thoai", "gio lam viec"]
|
| 185 |
+
)
|
| 186 |
+
if has_office_keywords:
|
| 187 |
+
return ("search_office", 0.8)
|
| 188 |
+
|
| 189 |
+
has_advisory_keywords = any(
|
| 190 |
+
self._keyword_in(query_lower, query_ascii, kw) for kw in
|
| 191 |
+
["cảnh báo", "lừa đảo", "scam", "canh bao", "lua dao"]
|
| 192 |
+
)
|
| 193 |
+
if has_advisory_keywords:
|
| 194 |
+
return ("search_advisory", 0.8)
|
| 195 |
+
|
| 196 |
+
# Only treat as greeting if it's VERY short (<= 3 words) and ONLY contains greeting words
|
| 197 |
+
# AND does NOT contain any other keywords
|
| 198 |
+
has_any_keyword = (has_fine_keywords or has_procedure_keywords or
|
| 199 |
+
has_office_keywords or has_advisory_keywords)
|
| 200 |
+
|
| 201 |
+
if (len(query_words) <= 3 and
|
| 202 |
+
any(self._keyword_in(query_lower, query_ascii, kw) for kw in ["xin chào", "chào", "hello", "hi", "xin chao", "chao"]) and
|
| 203 |
+
not has_any_keyword):
|
| 204 |
+
return ("greeting", 0.9)
|
| 205 |
+
|
| 206 |
+
return ("general_query", 0.5)
|
| 207 |
+
|
| 208 |
+
def extract_keywords(self, query: str) -> List[str]:
|
| 209 |
+
"""Extract keywords from query for search."""
|
| 210 |
+
# Remove common stopwords
|
| 211 |
+
stopwords = {"là", "gì", "bao nhiêu", "như thế nào", "ở đâu", "của", "và", "hoặc", "tôi", "bạn"}
|
| 212 |
+
|
| 213 |
+
words = re.findall(r'\b\w+\b', query.lower())
|
| 214 |
+
keywords = [w for w in words if w not in stopwords and len(w) > 2]
|
| 215 |
+
|
| 216 |
+
return keywords
|
| 217 |
+
|
| 218 |
+
def search_by_intent(self, intent: str, query: str, limit: int = 5) -> Dict[str, Any]:
|
| 219 |
+
"""Search based on classified intent."""
|
| 220 |
+
# Use original query for better matching, especially for Vietnamese text
|
| 221 |
+
keywords = query.strip()
|
| 222 |
+
# Also try with extracted keywords as fallback
|
| 223 |
+
extracted = " ".join(self.extract_keywords(query))
|
| 224 |
+
if extracted and len(extracted) > 2:
|
| 225 |
+
keywords = f"{keywords} {extracted}"
|
| 226 |
+
|
| 227 |
+
results = []
|
| 228 |
+
|
| 229 |
+
if intent == "search_fine":
|
| 230 |
+
qs = Fine.objects.all()
|
| 231 |
+
text_fields = ["name", "code", "article", "decree", "remedial"]
|
| 232 |
+
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
|
| 233 |
+
results = [{"type": "fine", "data": {
|
| 234 |
+
"id": f.id,
|
| 235 |
+
"name": f.name,
|
| 236 |
+
"code": f.code,
|
| 237 |
+
"min_fine": float(f.min_fine) if f.min_fine else None,
|
| 238 |
+
"max_fine": float(f.max_fine) if f.max_fine else None,
|
| 239 |
+
"article": f.article,
|
| 240 |
+
"decree": f.decree,
|
| 241 |
+
}} for f in search_results]
|
| 242 |
+
|
| 243 |
+
elif intent == "search_procedure":
|
| 244 |
+
qs = Procedure.objects.all()
|
| 245 |
+
text_fields = ["title", "domain", "conditions", "dossier"]
|
| 246 |
+
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
|
| 247 |
+
results = [{"type": "procedure", "data": {
|
| 248 |
+
"id": p.id,
|
| 249 |
+
"title": p.title,
|
| 250 |
+
"domain": p.domain,
|
| 251 |
+
"level": p.level,
|
| 252 |
+
}} for p in search_results]
|
| 253 |
+
|
| 254 |
+
elif intent == "search_office":
|
| 255 |
+
qs = Office.objects.all()
|
| 256 |
+
text_fields = ["unit_name", "address", "district", "service_scope"]
|
| 257 |
+
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
|
| 258 |
+
results = [{"type": "office", "data": {
|
| 259 |
+
"id": o.id,
|
| 260 |
+
"unit_name": o.unit_name,
|
| 261 |
+
"address": o.address,
|
| 262 |
+
"district": o.district,
|
| 263 |
+
"phone": o.phone,
|
| 264 |
+
"working_hours": o.working_hours,
|
| 265 |
+
}} for o in search_results]
|
| 266 |
+
|
| 267 |
+
elif intent == "search_advisory":
|
| 268 |
+
qs = Advisory.objects.all()
|
| 269 |
+
text_fields = ["title", "summary"]
|
| 270 |
+
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
|
| 271 |
+
results = [{"type": "advisory", "data": {
|
| 272 |
+
"id": a.id,
|
| 273 |
+
"title": a.title,
|
| 274 |
+
"summary": a.summary,
|
| 275 |
+
}} for a in search_results]
|
| 276 |
+
|
| 277 |
+
return {
|
| 278 |
+
"intent": intent,
|
| 279 |
+
"query": query,
|
| 280 |
+
"keywords": keywords,
|
| 281 |
+
"results": results,
|
| 282 |
+
"count": len(results)
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
def generate_response(self, query: str, session_id: str = None) -> Dict[str, Any]:
|
| 286 |
+
"""
|
| 287 |
+
Generate chatbot response for user query with Dual-Path RAG routing.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
query: User query string.
|
| 291 |
+
session_id: Optional session ID for context.
|
| 292 |
+
|
| 293 |
+
Returns:
|
| 294 |
+
Dict with message, intent, results, etc.
|
| 295 |
+
"""
|
| 296 |
+
import time
|
| 297 |
+
from hue_portal.chatbot.dual_path_router import DualPathRouter
|
| 298 |
+
from hue_portal.chatbot.fast_path_handler import FastPathHandler
|
| 299 |
+
from hue_portal.chatbot.slow_path_handler import SlowPathHandler
|
| 300 |
+
from hue_portal.core.models import QueryRoutingLog
|
| 301 |
+
|
| 302 |
+
query = query.strip()
|
| 303 |
+
start_time = time.time()
|
| 304 |
+
|
| 305 |
+
# Classify intent FIRST
|
| 306 |
+
intent, confidence = self.classify_intent(query)
|
| 307 |
+
|
| 308 |
+
# Route decision using Dual-Path Router
|
| 309 |
+
router = DualPathRouter()
|
| 310 |
+
route_decision = router.route(query, intent, confidence)
|
| 311 |
+
|
| 312 |
+
# Log routing decision (create log entry first, will update with response time)
|
| 313 |
+
routing_log = QueryRoutingLog.objects.create(
|
| 314 |
+
query=query[:500], # Truncate for storage
|
| 315 |
+
route=route_decision.path,
|
| 316 |
+
router_confidence=route_decision.confidence,
|
| 317 |
+
router_method=route_decision.method,
|
| 318 |
+
matched_golden_query_id=route_decision.matched_golden_query_id,
|
| 319 |
+
similarity_score=route_decision.similarity_score,
|
| 320 |
+
intent=intent,
|
| 321 |
+
response_time_ms=0 # Will update after
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
# Execute path
|
| 325 |
+
try:
|
| 326 |
+
if route_decision.path == "fast_path":
|
| 327 |
+
handler = FastPathHandler()
|
| 328 |
+
response = handler.handle(query, route_decision.matched_golden_query_id)
|
| 329 |
+
else:
|
| 330 |
+
handler = SlowPathHandler()
|
| 331 |
+
response = handler.handle(query, intent, session_id)
|
| 332 |
+
|
| 333 |
+
# Optionally save to golden dataset if high quality
|
| 334 |
+
if handler._should_save_to_golden(query, response):
|
| 335 |
+
self._save_to_golden_dataset(query, intent, response, session_id)
|
| 336 |
+
except Exception as e:
|
| 337 |
+
# Fallback to Slow Path on error
|
| 338 |
+
import logging
|
| 339 |
+
logger = logging.getLogger(__name__)
|
| 340 |
+
logger.error(f"Error in {route_decision.path}: {e}, falling back to Slow Path")
|
| 341 |
+
handler = SlowPathHandler()
|
| 342 |
+
response = handler.handle(query, intent, session_id)
|
| 343 |
+
route_decision.path = "slow_path"
|
| 344 |
+
route_decision.method = "fallback"
|
| 345 |
+
|
| 346 |
+
# Update log with response time
|
| 347 |
+
elapsed_ms = int((time.time() - start_time) * 1000)
|
| 348 |
+
routing_log.response_time_ms = elapsed_ms
|
| 349 |
+
routing_log.save(update_fields=['response_time_ms'])
|
| 350 |
+
|
| 351 |
+
# Add routing metadata to response
|
| 352 |
+
response['_routing'] = {
|
| 353 |
+
'path': route_decision.path,
|
| 354 |
+
'method': route_decision.method,
|
| 355 |
+
'confidence': route_decision.confidence
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
return response
|
| 359 |
+
|
| 360 |
+
def _save_to_golden_dataset(
|
| 361 |
+
self,
|
| 362 |
+
query: str,
|
| 363 |
+
intent: str,
|
| 364 |
+
response: Dict[str, Any],
|
| 365 |
+
session_id: Optional[str] = None
|
| 366 |
+
) -> None:
|
| 367 |
+
"""
|
| 368 |
+
Save high-quality response to golden dataset for future Fast Path use.
|
| 369 |
+
|
| 370 |
+
Args:
|
| 371 |
+
query: User query.
|
| 372 |
+
intent: Detected intent.
|
| 373 |
+
response: Response dict to save.
|
| 374 |
+
session_id: Optional session ID.
|
| 375 |
+
"""
|
| 376 |
+
try:
|
| 377 |
+
from hue_portal.core.models import GoldenQuery
|
| 378 |
+
from hue_portal.chatbot.slow_path_handler import SlowPathHandler
|
| 379 |
+
import unicodedata
|
| 380 |
+
import re
|
| 381 |
+
|
| 382 |
+
# Normalize query
|
| 383 |
+
normalized = query.lower().strip()
|
| 384 |
+
normalized = unicodedata.normalize("NFD", normalized)
|
| 385 |
+
normalized = "".join(ch for ch in normalized if unicodedata.category(ch) != "Mn")
|
| 386 |
+
normalized = re.sub(r'\s+', ' ', normalized).strip()
|
| 387 |
+
|
| 388 |
+
# Check if already exists
|
| 389 |
+
if GoldenQuery.objects.filter(query_normalized=normalized, is_active=True).exists():
|
| 390 |
+
return
|
| 391 |
+
|
| 392 |
+
# Generate embedding for semantic search (optional, can be done async)
|
| 393 |
+
query_embedding = None
|
| 394 |
+
try:
|
| 395 |
+
from hue_portal.core.embeddings import get_embedding_model
|
| 396 |
+
embedding_model = get_embedding_model()
|
| 397 |
+
if embedding_model:
|
| 398 |
+
embedding = embedding_model.encode(query, convert_to_numpy=True)
|
| 399 |
+
query_embedding = embedding.tolist()
|
| 400 |
+
except Exception:
|
| 401 |
+
pass # Embedding generation is optional
|
| 402 |
+
|
| 403 |
+
# Create golden query entry
|
| 404 |
+
GoldenQuery.objects.create(
|
| 405 |
+
query=query,
|
| 406 |
+
query_normalized=normalized,
|
| 407 |
+
query_embedding=query_embedding,
|
| 408 |
+
intent=intent,
|
| 409 |
+
response_message=response.get("message", ""),
|
| 410 |
+
response_data=response,
|
| 411 |
+
verified_by="slow_path_auto", # Auto-saved from Slow Path
|
| 412 |
+
accuracy_score=response.get("confidence", 0.95),
|
| 413 |
+
is_active=True
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
import logging
|
| 417 |
+
logger = logging.getLogger(__name__)
|
| 418 |
+
logger.info(f"Saved query to golden dataset: {query[:50]}...")
|
| 419 |
+
|
| 420 |
+
except Exception as e:
|
| 421 |
+
import logging
|
| 422 |
+
logger = logging.getLogger(__name__)
|
| 423 |
+
logger.warning(f"Error saving to golden dataset: {e}")
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
# Global chatbot instance
|
| 427 |
+
_chatbot_instance = None
|
| 428 |
+
|
| 429 |
+
def get_chatbot() -> Chatbot:
|
| 430 |
+
"""Get or create chatbot instance."""
|
| 431 |
+
global _chatbot_instance
|
| 432 |
+
if _chatbot_instance is None:
|
| 433 |
+
_chatbot_instance = Chatbot()
|
| 434 |
+
return _chatbot_instance
|
| 435 |
+
|