Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
| 3 |
import spaces
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
|
| 8 |
@spaces
|
| 9 |
def generate_text(input_text):
|
|
@@ -15,11 +18,10 @@ def generate_text(input_text):
|
|
| 15 |
Returns:
|
| 16 |
str: The generated text.
|
| 17 |
"""
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
]
|
| 21 |
-
|
| 22 |
-
return output[0]['generated_text'] # Extract the generated text
|
| 23 |
|
| 24 |
iface = gr.Interface(
|
| 25 |
fn=generate_text,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
import spaces
|
| 5 |
|
| 6 |
+
# Load model and tokenizer only once, outside the function
|
| 7 |
+
model_name = "deepapaikar/LlamaKatz-3x8B"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto')
|
| 10 |
|
| 11 |
@spaces
|
| 12 |
def generate_text(input_text):
|
|
|
|
| 18 |
Returns:
|
| 19 |
str: The generated text.
|
| 20 |
"""
|
| 21 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 22 |
+
outputs = model.generate(**inputs)
|
| 23 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 24 |
+
return generated_text
|
|
|
|
| 25 |
|
| 26 |
iface = gr.Interface(
|
| 27 |
fn=generate_text,
|