Spaces:
Sleeping
Sleeping
File size: 55,845 Bytes
a06557f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 |
"""
Smart Waste Segregation System - Hardware-Realistic Simulator with Real Model
Simulates complete edge deployment with realistic sensor protocols, motor control, and hardware timing
Dependencies: pip install streamlit numpy pillow opencv-python-headless sqlite3 torch torchvision
"""
import streamlit as st
import sqlite3
import json
import time
import random
import numpy as np
from PIL import Image
import io
import base64
from datetime import datetime
from dataclasses import dataclass, asdict
from typing import Dict, List, Optional, Tuple
import threading
import queue
from enum import Enum
import os
# PyTorch imports
import torch
import torch.nn as nn
from torchvision import transforms, models
# ==================== HARDWARE CONSTANTS ====================
class HardwareConfig:
"""Realistic hardware specifications"""
# Ultrasonic Sensor (HC-SR04)
ULTRASONIC_MIN_DISTANCE = 2.0 # cm
ULTRASONIC_MAX_DISTANCE = 400.0 # cm
ULTRASONIC_ACCURACY = 0.3 # cm
ULTRASONIC_READ_TIME = 0.015 # seconds (15ms)
# Capacitive Moisture Sensor
MOISTURE_MIN_VOLTAGE = 0.0 # V (dry)
MOISTURE_MAX_VOLTAGE = 3.3 # V (wet)
MOISTURE_ADC_RESOLUTION = 12 # bits (4096 levels)
MOISTURE_READ_TIME = 0.010 # seconds (10ms)
# Load Cell (HX711)
WEIGHT_MAX_CAPACITY = 5000.0 # grams (5kg)
WEIGHT_RESOLUTION = 0.1 # grams
WEIGHT_STABILIZATION_TIME = 0.5 # seconds
WEIGHT_READ_TIME = 0.100 # seconds (100ms)
# Servo Motor (MG996R)
SERVO_MIN_ANGLE = 0
SERVO_MAX_ANGLE = 180
SERVO_SPEED = 60 # degrees per 0.17 seconds (at 4.8V)
SERVO_CURRENT_IDLE = 10 # mA
SERVO_CURRENT_MOVING = 500 # mA
SERVO_TORQUE = 11 # kg-cm
# Camera (Raspberry Pi Camera Module v2)
CAMERA_RESOLUTION = (1920, 1080)
CAMERA_CAPTURE_TIME = 0.150 # seconds
CAMERA_WARMUP_TIME = 2.0 # seconds
# Edge Device (Raspberry Pi 4)
CPU_CORES = 4
RAM_MB = 4096
INFERENCE_OVERHEAD = 0.050 # seconds
# ==================== DATABASE SETUP ====================
def init_database():
"""Initialize SQLite database with required tables"""
conn = sqlite3.connect('waste_segregation.db', check_same_thread=False)
cursor = conn.cursor()
# Check if we need to migrate old database
try:
cursor.execute("SELECT total_pipeline_time_ms FROM events LIMIT 1")
except sqlite3.OperationalError:
# Column doesn't exist, need to add it
try:
cursor.execute("ALTER TABLE events ADD COLUMN total_pipeline_time_ms REAL")
conn.commit()
st.info("β
Database schema updated successfully")
except sqlite3.OperationalError:
# Table doesn't exist at all, will be created below
pass
# Events table
cursor.execute('''
CREATE TABLE IF NOT EXISTS events (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT NOT NULL,
image_name TEXT,
waste_class TEXT NOT NULL,
confidence REAL NOT NULL,
distance_cm REAL,
moisture_raw INTEGER,
moisture_percent REAL,
weight_g REAL,
servo_angle INTEGER,
inference_time_ms REAL,
total_pipeline_time_ms REAL,
status TEXT,
power_consumption_mw REAL
)
''')
# Telemetry table
cursor.execute('''
CREATE TABLE IF NOT EXISTS telemetry (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT NOT NULL,
component TEXT NOT NULL,
data TEXT NOT NULL
)
''')
# Hardware diagnostics table
cursor.execute('''
CREATE TABLE IF NOT EXISTS hardware_diagnostics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT NOT NULL,
component TEXT NOT NULL,
status TEXT NOT NULL,
voltage REAL,
current_ma REAL,
temperature_c REAL,
error_count INTEGER
)
''')
conn.commit()
return conn
# ==================== DATA MODELS ====================
@dataclass
class SensorReading:
"""Raw sensor reading with hardware-realistic properties"""
value: float
raw_value: int # ADC value
voltage: float
read_time_ms: float
noise_level: float
timestamp: str
@dataclass
class SensorData:
"""Complete sensor suite readings"""
distance_cm: float
distance_raw: SensorReading
moisture_percent: float
moisture_raw: SensorReading
weight_g: float
weight_raw: SensorReading
temperature: float
timestamp: str
total_read_time_ms: float
@dataclass
class InferenceResult:
"""AI model inference output with edge device metrics"""
waste_class: str
confidence: float
inference_time_ms: float
preprocessing_time_ms: float
postprocessing_time_ms: float
probabilities: Dict[str, float]
model_version: str
device_temperature: float
cpu_usage_percent: float
@dataclass
class MotorControl:
"""Servo motor control with realistic physics"""
target_angle: int
current_angle: int
start_angle: int
status: str
duration_ms: float
power_consumption_mw: float
torque_applied: float
movement_profile: List[Tuple[float, int]] # (time_ms, angle)
class SensorStatus(Enum):
"""Sensor operational status"""
READY = "ready"
READING = "reading"
STABILIZING = "stabilizing"
ERROR = "error"
CALIBRATING = "calibrating"
# ==================== REALISTIC SENSOR SIMULATION ====================
class UltrasonicSensor:
"""HC-SR04 Ultrasonic Sensor Simulation"""
def __init__(self):
self.status = SensorStatus.READY
self.error_count = 0
self.last_reading = None
self.calibration_offset = random.uniform(-0.2, 0.2)
def trigger_read(self, actual_distance: float) -> SensorReading:
"""Simulate ultrasonic pulse and echo timing"""
start_time = time.time()
self.status = SensorStatus.READING
# Simulate trigger pulse (10ΞΌs) and echo wait
time.sleep(HardwareConfig.ULTRASONIC_READ_TIME)
# Add realistic noise and environmental factors
noise = random.gauss(0, HardwareConfig.ULTRASONIC_ACCURACY)
temperature_factor = 1.0 + random.uniform(-0.02, 0.02)
# Simulate occasional read errors (1% chance)
if random.random() < 0.01:
self.error_count += 1
measured_distance = -1.0 # Error code
else:
measured_distance = (actual_distance + noise + self.calibration_offset) * temperature_factor
measured_distance = max(HardwareConfig.ULTRASONIC_MIN_DISTANCE,
min(HardwareConfig.ULTRASONIC_MAX_DISTANCE, measured_distance))
# Calculate echo time (distance = speed * time / 2)
echo_time_us = (measured_distance * 2) / 0.0343 if measured_distance > 0 else 0
read_time = (time.time() - start_time) * 1000
self.status = SensorStatus.READY
self.last_reading = measured_distance
return SensorReading(
value=round(measured_distance, 2),
raw_value=int(echo_time_us),
voltage=3.3,
read_time_ms=round(read_time, 3),
noise_level=abs(noise),
timestamp=datetime.now().isoformat()
)
class MoistureSensor:
"""Capacitive Soil Moisture Sensor Simulation"""
def __init__(self):
self.status = SensorStatus.READY
self.adc_resolution = 2 ** HardwareConfig.MOISTURE_ADC_RESOLUTION
self.calibration_dry = random.randint(3200, 3400)
self.calibration_wet = random.randint(1200, 1400)
def read_moisture(self, actual_moisture: float) -> SensorReading:
"""Read capacitive moisture sensor via ADC"""
start_time = time.time()
self.status = SensorStatus.READING
time.sleep(HardwareConfig.MOISTURE_READ_TIME)
# Convert moisture percentage to ADC value
adc_range = self.calibration_dry - self.calibration_wet
adc_value = self.calibration_dry - (actual_moisture * adc_range)
# Add ADC noise (Β±2 LSB typical)
adc_noise = random.randint(-2, 2)
adc_value = int(adc_value + adc_noise)
adc_value = max(0, min(self.adc_resolution - 1, adc_value))
# Convert ADC to voltage
voltage = (adc_value / self.adc_resolution) * HardwareConfig.MOISTURE_MAX_VOLTAGE
# Convert back to percentage
measured_moisture = (self.calibration_dry - adc_value) / adc_range
measured_moisture = max(0.0, min(1.0, measured_moisture))
read_time = (time.time() - start_time) * 1000
self.status = SensorStatus.READY
return SensorReading(
value=round(measured_moisture, 4),
raw_value=adc_value,
voltage=round(voltage, 3),
read_time_ms=round(read_time, 3),
noise_level=abs(adc_noise / adc_range) if adc_range != 0 else 0.0,
timestamp=datetime.now().isoformat()
)
class LoadCellSensor:
"""HX711 Load Cell Amplifier Simulation"""
def __init__(self):
self.status = SensorStatus.READY
self.tare_value = random.randint(-50000, 50000)
self.calibration_factor = random.uniform(420, 450)
self.last_stable_reading = 0.0
self.reading_buffer = []
def read_weight(self, actual_weight: float) -> SensorReading:
"""Read load cell with stabilization"""
start_time = time.time()
self.status = SensorStatus.STABILIZING
# Simulate mechanical settling time
time.sleep(HardwareConfig.WEIGHT_STABILIZATION_TIME * 0.2)
self.status = SensorStatus.READING
# Take multiple readings and average
readings = []
for _ in range(10):
adc_value = self.tare_value + int(actual_weight * self.calibration_factor)
noise = random.randint(-2, 2)
vibration = random.gauss(0, 5)
adc_value += int(noise + vibration)
readings.append(adc_value)
time.sleep(HardwareConfig.WEIGHT_READ_TIME / 10)
# Average and filter
avg_adc = int(np.mean(readings))
measured_weight = (avg_adc - self.tare_value) / self.calibration_factor
measured_weight = max(0.0, min(HardwareConfig.WEIGHT_MAX_CAPACITY, measured_weight))
measured_weight = round(measured_weight / HardwareConfig.WEIGHT_RESOLUTION) * HardwareConfig.WEIGHT_RESOLUTION
read_time = (time.time() - start_time) * 1000
self.status = SensorStatus.READY
self.last_stable_reading = measured_weight
return SensorReading(
value=round(measured_weight, 2),
raw_value=avg_adc,
voltage=3.3,
read_time_ms=round(read_time, 3),
noise_level=np.std(readings) / self.calibration_factor,
timestamp=datetime.now().isoformat()
)
class SensorHub:
"""Integrated sensor management system"""
def __init__(self):
self.ultrasonic = UltrasonicSensor()
self.moisture = MoistureSensor()
self.load_cell = LoadCellSensor()
self.temperature = 28.0
self.baseline = {
'distance_cm': 25.0,
'moisture': 0.3,
'weight_g': 150.0
}
def read_all_sensors(self) -> SensorData:
"""Read all sensors with realistic timing"""
start_time = time.time()
distance_reading = self.ultrasonic.trigger_read(self.baseline['distance_cm'])
moisture_reading = self.moisture.read_moisture(self.baseline['moisture'])
weight_reading = self.load_cell.read_weight(self.baseline['weight_g'])
self.temperature = 28.0 + random.uniform(-2, 2)
total_time = (time.time() - start_time) * 1000
return SensorData(
distance_cm=distance_reading.value,
distance_raw=distance_reading,
moisture_percent=moisture_reading.value * 100,
moisture_raw=moisture_reading,
weight_g=weight_reading.value,
weight_raw=weight_reading,
temperature=round(self.temperature, 2),
timestamp=datetime.now().isoformat(),
total_read_time_ms=round(total_time, 2)
)
def set_baseline(self, distance=None, moisture=None, weight=None):
"""Update sensor baselines for simulation"""
if distance is not None:
self.baseline['distance_cm'] = distance
if moisture is not None:
self.baseline['moisture'] = moisture
if weight is not None:
self.baseline['weight_g'] = weight
# ==================== REAL EDGE AI INFERENCE ====================
class EdgeAIProcessor:
"""Edge device AI inference with REAL trained model"""
def __init__(self, model_path: Optional[str] = None):
self.model_path = model_path or 'best_trash_classifier.pth'
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model = None
self.model_loaded = False
self.model_version = "v1.0.0-mock"
self.warmup_complete = False
self.classes = []
# Edge device specs
self.device_temp = 45.0
self.cpu_usage = 25.0
# Image preprocessing transform
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Try to load real model
self.load_model()
def load_model(self):
"""Load the trained PyTorch model"""
try:
if not os.path.exists(self.model_path):
st.warning(f"β οΈ Model file '{self.model_path}' not found. Using mock inference.")
self.classes = ["organic", "recyclable", "non-recyclable"]
return
# Load checkpoint
checkpoint = torch.load(self.model_path, map_location=self.device)
# Get class names from checkpoint
self.classes = checkpoint.get('class_names', ["organic", "recyclable", "non-recyclable"])
num_classes = len(self.classes)
# Build model architecture (same as training)
self.model = models.efficientnet_v2_s(weights=None)
num_features = self.model.classifier[1].in_features
self.model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(num_features, 512),
nn.ReLU(),
nn.Dropout(p=0.3),
nn.Linear(512, num_classes)
)
# Load weights
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model = self.model.to(self.device)
self.model.eval()
self.model_loaded = True
self.model_version = f"v1.0.0-efficientnet-epoch{checkpoint.get('epoch', 'unknown')}"
st.success(f"β
Model loaded successfully! Classes: {self.classes}")
except Exception as e:
st.error(f"β Failed to load model: {e}")
st.info("Using mock inference mode")
self.classes = ["organic", "recyclable", "non-recyclable"]
self.model_loaded = False
def warmup(self):
"""Warm up model (first inference is slower)"""
if not self.warmup_complete and self.model_loaded:
try:
dummy_input = torch.randn(1, 3, 224, 224).to(self.device)
with torch.no_grad():
_ = self.model(dummy_input)
self.warmup_complete = True
except:
pass
def preprocess_image(self, image: Image.Image) -> Tuple[torch.Tensor, float]:
"""Preprocess image for inference with timing"""
start_time = time.time()
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Apply transforms
img_tensor = self.transform(image)
img_tensor = img_tensor.unsqueeze(0) # Add batch dimension
preprocess_time = (time.time() - start_time) * 1000
return img_tensor, preprocess_time
def infer(self, image: Image.Image, sensor_data: SensorData) -> InferenceResult:
"""Run inference with real or mock model"""
self.warmup()
# Preprocessing
input_tensor, preprocess_time = self.preprocess_image(image)
# Inference
inference_start = time.time()
if self.model_loaded and self.model is not None:
# REAL MODEL INFERENCE
try:
input_tensor = input_tensor.to(self.device)
with torch.no_grad():
outputs = self.model(input_tensor)
logits = outputs[0].cpu().numpy()
except Exception as e:
st.error(f"Inference error: {e}")
# Fallback to mock
logits = self._mock_inference_with_fusion(sensor_data)
else:
# MOCK INFERENCE with sensor fusion
logits = self._mock_inference_with_fusion(sensor_data)
# Simulate realistic inference time
time.sleep(random.uniform(0.050, 0.150))
inference_time = (time.time() - inference_start) * 1000
# Postprocessing
postprocess_start = time.time()
# Softmax
exp_logits = np.exp(logits - np.max(logits))
probs = exp_logits / np.sum(exp_logits)
class_idx = int(np.argmax(probs))
waste_class = self.classes[class_idx]
confidence = float(probs[class_idx])
prob_dict = {cls: float(probs[i]) for i, cls in enumerate(self.classes)}
postprocess_time = (time.time() - postprocess_start) * 1000
# Update device metrics
self.device_temp = min(85.0, self.device_temp + random.uniform(-1, 2))
self.cpu_usage = min(100.0, max(20.0, self.cpu_usage + random.uniform(-10, 15)))
return InferenceResult(
waste_class=waste_class,
confidence=round(confidence, 4),
inference_time_ms=round(inference_time, 2),
preprocessing_time_ms=round(preprocess_time, 2),
postprocessing_time_ms=round(postprocess_time, 2),
probabilities=prob_dict,
model_version=self.model_version,
device_temperature=round(self.device_temp, 1),
cpu_usage_percent=round(self.cpu_usage, 1)
)
def _mock_inference_with_fusion(self, sensor_data: SensorData) -> np.ndarray:
"""Mock inference using multi-modal sensor fusion"""
logits = np.random.randn(len(self.classes)) * 0.3
# Moisture-based classification
moisture = sensor_data.moisture_percent / 100.0
if moisture > 0.5:
logits[0] += 2.5 # High moisture -> organic
elif moisture < 0.2:
logits[1] += 1.5 # Low moisture -> recyclable
else:
logits[2] += 1.0 # Medium moisture -> non-recyclable
# Weight-based refinement
weight = sensor_data.weight_g
if weight < 50:
logits[1] += 0.5 # Light items often recyclable
elif weight > 300:
logits[2] += 0.5 # Heavy items often non-recyclable
# Distance-based confidence adjustment
distance_factor = 1.0 - (sensor_data.distance_cm / 100.0)
logits *= (0.7 + 0.3 * distance_factor)
return logits
# ==================== REALISTIC MOTOR CONTROL ====================
class ServoMotor:
"""MG996R Servo Motor Simulation with realistic physics"""
# Bin routing angles
BIN_POSITIONS = {
"organic": 0,
"recyclable": 90,
"non-recyclable": 180
}
def __init__(self):
self.current_angle = 90
self.target_angle = 90
self.is_moving = False
self.speed_deg_per_sec = HardwareConfig.SERVO_SPEED / 0.17
self.voltage = 5.0
self.current_ma = HardwareConfig.SERVO_CURRENT_IDLE
self.position_history = []
def calculate_movement_profile(self, start: int, end: int, duration_s: float) -> List[Tuple[float, int]]:
"""Calculate realistic servo movement with acceleration/deceleration"""
profile = []
steps = max(10, int(duration_s * 50))
for i in range(steps + 1):
t = i / steps
# S-curve motion profile
if t < 0.3:
progress = (t / 0.3) ** 2 * 0.3
elif t > 0.7:
progress = 1.0 - ((1.0 - t) / 0.3) ** 2 * 0.3
else:
progress = 0.3 + (t - 0.3) * (0.4 / 0.4)
angle = int(start + (end - start) * progress)
time_ms = t * duration_s * 1000
profile.append((round(time_ms, 1), angle))
return profile
def move_to_bin(self, waste_class: str) -> MotorControl:
"""Move servo to route waste to correct bin with realistic physics"""
target = self.BIN_POSITIONS.get(waste_class, 90)
start_angle = self.current_angle
start_time = time.time()
self.is_moving = True
self.target_angle = target
self.current_ma = HardwareConfig.SERVO_CURRENT_MOVING
angle_distance = abs(target - start_angle)
duration_s = (angle_distance / 60.0) * 0.17
movement_profile = self.calculate_movement_profile(start_angle, target, duration_s)
# Simulate movement
time.sleep(duration_s * 0.3)
avg_current = (HardwareConfig.SERVO_CURRENT_MOVING + HardwareConfig.SERVO_CURRENT_IDLE) / 2
power_mw = self.voltage * avg_current
torque_applied = HardwareConfig.SERVO_TORQUE * 0.7
self.current_angle = target
self.is_moving = False
self.current_ma = HardwareConfig.SERVO_CURRENT_IDLE
actual_duration = (time.time() - start_time) * 1000
return MotorControl(
target_angle=target,
current_angle=target,
start_angle=start_angle,
status="completed",
duration_ms=round(actual_duration, 2),
power_consumption_mw=round(power_mw, 2),
torque_applied=round(torque_applied, 2),
movement_profile=movement_profile
)
def get_diagnostics(self) -> dict:
"""Get motor diagnostic information"""
return {
'current_angle': self.current_angle,
'target_angle': self.target_angle,
'is_moving': self.is_moving,
'current_ma': self.current_ma,
'voltage': self.voltage,
'temperature_c': 35.0 + random.uniform(-2, 5)
}
# ==================== CAMERA SIMULATION ====================
class CameraModule:
"""Raspberry Pi Camera Module v2 Simulation"""
def __init__(self):
self.resolution = HardwareConfig.CAMERA_RESOLUTION
self.is_warmed_up = False
self.frame_count = 0
def warmup(self):
"""Camera warmup (auto-exposure, white balance)"""
if not self.is_warmed_up:
time.sleep(HardwareConfig.CAMERA_WARMUP_TIME * 0.1)
self.is_warmed_up = True
def capture_image(self, uploaded_image: Optional[Image.Image] = None) -> Tuple[Image.Image, float]:
"""Capture image with realistic timing"""
self.warmup()
start_time = time.time()
time.sleep(HardwareConfig.CAMERA_CAPTURE_TIME * 0.5)
if uploaded_image:
image = uploaded_image
else:
image = self._generate_synthetic_waste()
capture_time = (time.time() - start_time) * 1000
self.frame_count += 1
return image, capture_time
def _generate_synthetic_waste(self) -> Image.Image:
"""Generate synthetic waste image for testing"""
colors = [
(139, 90, 43), # Brown (organic)
(200, 200, 200), # Gray (recyclable)
(50, 50, 50) # Dark (non-recyclable)
]
color = random.choice(colors)
color = tuple(max(0, min(255, c + random.randint(-30, 30))) for c in color)
image = Image.new('RGB', (224, 224), color=color)
return image
# ==================== DATA LOGGER ====================
class DataLogger:
"""Logs all events, telemetry, and hardware diagnostics to SQLite"""
def __init__(self, conn):
self.conn = conn
self.lock = threading.Lock()
def log_event(self, sensor_data: SensorData, inference: InferenceResult,
motor: MotorControl, image_name: str = "sample.jpg"):
"""Log complete segregation event with hardware metrics"""
with self.lock:
cursor = self.conn.cursor()
total_time = (sensor_data.total_read_time_ms +
inference.preprocessing_time_ms +
inference.inference_time_ms +
inference.postprocessing_time_ms +
motor.duration_ms)
cursor.execute('''
INSERT INTO events (
timestamp, image_name, waste_class, confidence,
distance_cm, moisture_raw, moisture_percent, weight_g,
servo_angle, inference_time_ms, total_pipeline_time_ms,
status, power_consumption_mw
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
sensor_data.timestamp,
image_name,
inference.waste_class,
inference.confidence,
sensor_data.distance_cm,
sensor_data.moisture_raw.raw_value,
sensor_data.moisture_percent,
sensor_data.weight_g,
motor.target_angle,
inference.inference_time_ms,
total_time,
motor.status,
motor.power_consumption_mw
))
self.conn.commit()
def log_telemetry(self, component: str, data: dict):
"""Log component telemetry"""
with self.lock:
cursor = self.conn.cursor()
cursor.execute('''
INSERT INTO telemetry (timestamp, component, data)
VALUES (?, ?, ?)
''', (
datetime.now().isoformat(),
component,
json.dumps(data)
))
self.conn.commit()
def log_hardware_diagnostics(self, component: str, status: str,
voltage: float = 0, current_ma: float = 0,
temperature: float = 0, error_count: int = 0):
"""Log hardware diagnostics"""
with self.lock:
cursor = self.conn.cursor()
cursor.execute('''
INSERT INTO hardware_diagnostics
(timestamp, component, status, voltage, current_ma, temperature_c, error_count)
VALUES (?, ?, ?, ?, ?, ?, ?)
''', (
datetime.now().isoformat(),
component,
status,
voltage,
current_ma,
temperature,
error_count
))
self.conn.commit()
def get_recent_events(self, limit: int = 10) -> List[dict]:
"""Retrieve recent events"""
cursor = self.conn.cursor()
cursor.execute('''
SELECT * FROM events
ORDER BY timestamp DESC
LIMIT ?
''', (limit,))
columns = [desc[0] for desc in cursor.description]
return [dict(zip(columns, row)) for row in cursor.fetchall()]
def get_statistics(self) -> dict:
"""Get overall statistics"""
cursor = self.conn.cursor()
# Class distribution
cursor.execute('''
SELECT waste_class, COUNT(*) as count
FROM events
GROUP BY waste_class
''')
class_dist = dict(cursor.fetchall())
# Average confidence
cursor.execute('SELECT AVG(confidence) FROM events')
avg_conf = cursor.fetchone()[0] or 0
# Average pipeline time
cursor.execute('SELECT AVG(total_pipeline_time_ms) FROM events')
avg_time = cursor.fetchone()[0] or 0
# Total events
cursor.execute('SELECT COUNT(*) FROM events')
total = cursor.fetchone()[0]
# Total power consumption
cursor.execute('SELECT SUM(power_consumption_mw) FROM events')
total_power = cursor.fetchone()[0] or 0
return {
'total_events': total,
'class_distribution': class_dist,
'average_confidence': round(avg_conf, 4),
'average_pipeline_time_ms': round(avg_time, 2),
'total_power_consumption_mwh': round(total_power / 3600000, 4)
}
def get_hardware_diagnostics(self, limit: int = 20) -> List[dict]:
"""Get recent hardware diagnostics"""
cursor = self.conn.cursor()
cursor.execute('''
SELECT * FROM hardware_diagnostics
ORDER BY timestamp DESC
LIMIT ?
''', (limit,))
columns = [desc[0] for desc in cursor.description]
return [dict(zip(columns, row)) for row in cursor.fetchall()]
# ==================== STREAMLIT DASHBOARD ====================
def main():
st.set_page_config(
page_title="Smart Waste Segregation System",
page_icon="β»οΈ",
layout="wide"
)
# Initialize components
if 'db_conn' not in st.session_state:
st.session_state.db_conn = init_database()
if 'sensor_hub' not in st.session_state:
st.session_state.sensor_hub = SensorHub()
if 'edge_ai' not in st.session_state:
st.session_state.edge_ai = EdgeAIProcessor()
if 'servo' not in st.session_state:
st.session_state.servo = ServoMotor()
if 'camera' not in st.session_state:
st.session_state.camera = CameraModule()
if 'logger' not in st.session_state:
st.session_state.logger = DataLogger(st.session_state.db_conn)
if 'execution_log' not in st.session_state:
st.session_state.execution_log = []
# Header
st.title("β»οΈ Smart Waste Segregation System - Hardware Simulator")
st.markdown("**IDEA-ONE Hackathon | Team Trackify | Edge AI Deployment Demo**")
# Model status indicator
if st.session_state.edge_ai.model_loaded:
st.success(f"β
Real Model Loaded: {st.session_state.edge_ai.model_version}")
else:
st.warning("β οΈ Using Mock Inference (Model not found)")
st.markdown("---")
# Hardware status bar
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.metric("π‘οΈ Device Temp", f"{st.session_state.edge_ai.device_temp:.1f}Β°C")
with col2:
st.metric("π» CPU Usage", f"{st.session_state.edge_ai.cpu_usage:.1f}%")
with col3:
st.metric("β‘ Servo Angle", f"{st.session_state.servo.current_angle}Β°")
with col4:
st.metric("π· Frames", st.session_state.camera.frame_count)
with col5:
st.metric("π Servo Current", f"{st.session_state.servo.current_ma} mA")
st.markdown("---")
# Tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"π Live Pipeline",
"π Dashboard",
"π Event Logs",
"π§ Hardware Diagnostics",
"π‘ Sensor Details"
])
# ==================== TAB 1: LIVE PIPELINE ====================
with tab1:
col1, col2 = st.columns([1, 2])
with col1:
st.subheader("βοΈ Sensor Configuration")
st.markdown("##### Ultrasonic Sensor (HC-SR04)")
distance = st.slider("Distance (cm)", 2.0, 60.0, 25.0, 0.5)
st.markdown("##### Capacitive Moisture Sensor")
moisture = st.slider("Moisture (%)", 0.0, 100.0, 30.0, 1.0) / 100.0
st.markdown("##### Load Cell (HX711)")
weight = st.slider("Weight (g)", 0.0, 1000.0, 150.0, 1.0)
st.session_state.sensor_hub.set_baseline(distance, moisture, weight)
st.markdown("---")
# Image upload
st.subheader("π· Camera Input")
uploaded_file = st.file_uploader(
"Upload waste image (optional)",
type=['jpg', 'png', 'jpeg']
)
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, width=250, caption="Uploaded Image")
else:
st.info("No image uploaded. Will use synthetic waste image.")
st.markdown("---")
# Execute button
if st.button("π Run Complete Pipeline", type="primary", use_container_width=True):
st.session_state.execution_log = []
with st.spinner("Processing..."):
pipeline_start = time.time()
# Step 1: Camera capture
st.session_state.execution_log.append("π· Capturing image from camera...")
try:
if uploaded_file:
image = Image.open(uploaded_file)
capture_time = 0
else:
image, capture_time = st.session_state.camera.capture_image()
st.session_state.execution_log.append(f" β Image captured ({capture_time:.2f}ms)")
except Exception as e:
st.session_state.execution_log.append(f" β οΈ Image capture failed: {e}")
st.session_state.execution_log.append(" π Generating synthetic image...")
image = st.session_state.camera._generate_synthetic_waste()
capture_time = 0
# Step 2: Sensor reading
st.session_state.execution_log.append("π‘ Reading sensor suite...")
sensor_data = st.session_state.sensor_hub.read_all_sensors()
st.session_state.execution_log.append(f" β Sensors read ({sensor_data.total_read_time_ms:.2f}ms)")
st.session_state.execution_log.append(f" - Distance: {sensor_data.distance_cm} cm")
st.session_state.execution_log.append(f" - Moisture: {sensor_data.moisture_percent:.1f}%")
st.session_state.execution_log.append(f" - Weight: {sensor_data.weight_g} g")
# Log sensor telemetry
st.session_state.logger.log_telemetry("sensors", {
'distance': asdict(sensor_data.distance_raw),
'moisture': asdict(sensor_data.moisture_raw),
'weight': asdict(sensor_data.weight_raw),
'temperature': sensor_data.temperature
})
# Step 3: AI Inference
st.session_state.execution_log.append("π€ Running edge AI inference...")
inference = st.session_state.edge_ai.infer(image, sensor_data)
st.session_state.execution_log.append(f" β Inference complete ({inference.inference_time_ms:.2f}ms)")
st.session_state.execution_log.append(f" - Preprocessing: {inference.preprocessing_time_ms:.2f}ms")
st.session_state.execution_log.append(f" - Model inference: {inference.inference_time_ms:.2f}ms")
st.session_state.execution_log.append(f" - Postprocessing: {inference.postprocessing_time_ms:.2f}ms")
st.session_state.execution_log.append(f" - Classification: {inference.waste_class} ({inference.confidence*100:.2f}%)")
# Log AI telemetry
st.session_state.logger.log_telemetry("edge_ai", asdict(inference))
# Step 4: Motor control
st.session_state.execution_log.append(f"βοΈ Actuating servo to {inference.waste_class} bin...")
motor = st.session_state.servo.move_to_bin(inference.waste_class)
st.session_state.execution_log.append(f" β Servo moved ({motor.duration_ms:.2f}ms)")
st.session_state.execution_log.append(f" - Start angle: {motor.start_angle}Β°")
st.session_state.execution_log.append(f" - Target angle: {motor.target_angle}Β°")
st.session_state.execution_log.append(f" - Power consumption: {motor.power_consumption_mw:.2f} mW")
# Log motor telemetry
st.session_state.logger.log_telemetry("servo_motor", asdict(motor))
# Step 5: Log event
st.session_state.execution_log.append("πΎ Logging event to database...")
image_name = uploaded_file.name if uploaded_file else "synthetic.jpg"
st.session_state.logger.log_event(sensor_data, inference, motor, image_name)
# Log hardware diagnostics
st.session_state.logger.log_hardware_diagnostics(
"ultrasonic", "operational", 3.3, 15, sensor_data.temperature,
st.session_state.sensor_hub.ultrasonic.error_count
)
st.session_state.logger.log_hardware_diagnostics(
"servo_motor", "operational", 5.0, st.session_state.servo.current_ma,
35.0, 0
)
pipeline_time = (time.time() - pipeline_start) * 1000
st.session_state.execution_log.append(f"β
Pipeline completed! Total time: {pipeline_time:.2f}ms")
# Store results
st.session_state.last_result = {
'sensor': sensor_data,
'inference': inference,
'motor': motor,
'image': image,
'pipeline_time': pipeline_time
}
st.success("β
Segregation completed successfully!")
st.balloons()
with col2:
st.subheader("π Pipeline Execution Log")
# Execution log
if st.session_state.execution_log:
log_container = st.container()
with log_container:
for log_entry in st.session_state.execution_log:
if "β" in log_entry or "β
" in log_entry:
st.success(log_entry)
elif "π‘" in log_entry or "π€" in log_entry or "βοΈ" in log_entry or "π·" in log_entry:
st.info(log_entry)
else:
st.write(log_entry)
st.markdown("---")
# Results
if 'last_result' in st.session_state:
res = st.session_state.last_result
st.subheader("π Pipeline Results")
# Display captured image
col_img, col_metrics = st.columns([1, 2])
with col_img:
st.image(res['image'], caption="Processed Image", use_container_width=True)
with col_metrics:
st.metric("ποΈ Classification", res['inference'].waste_class.upper())
st.metric("π Confidence", f"{res['inference'].confidence*100:.2f}%")
st.metric("π€ Inference Time", f"{res['inference'].inference_time_ms:.2f} ms")
st.metric("β±οΈ Total Pipeline Time", f"{res['pipeline_time']:.2f} ms")
st.markdown("---")
st.metric("βοΈ Servo Angle", f"{res['motor'].target_angle}Β°")
st.metric("β‘ Power Used", f"{res['motor'].power_consumption_mw:.2f} mW")
st.markdown("---")
# Class probabilities
st.markdown("#### π Classification Probabilities")
for cls, prob in res['inference'].probabilities.items():
st.progress(prob, text=f"{cls.capitalize()}: {prob*100:.2f}%")
st.markdown("---")
# Detailed telemetry
st.subheader("π‘ Detailed Component Telemetry")
tel_col1, tel_col2, tel_col3 = st.columns(3)
with tel_col1:
with st.expander("π Sensor Readings", expanded=False):
sensor_data = {
'distance_cm': res['sensor'].distance_cm,
'distance_raw_adc': res['sensor'].distance_raw.raw_value,
'moisture_percent': res['sensor'].moisture_percent,
'moisture_raw_adc': res['sensor'].moisture_raw.raw_value,
'weight_g': res['sensor'].weight_g,
'weight_raw_adc': res['sensor'].weight_raw.raw_value,
'temperature_c': res['sensor'].temperature,
'total_read_time_ms': res['sensor'].total_read_time_ms
}
st.json(sensor_data)
with tel_col2:
with st.expander("π€ AI Inference", expanded=False):
inference_data = {
'waste_class': res['inference'].waste_class,
'confidence': res['inference'].confidence,
'probabilities': res['inference'].probabilities,
'preprocessing_ms': res['inference'].preprocessing_time_ms,
'inference_ms': res['inference'].inference_time_ms,
'postprocessing_ms': res['inference'].postprocessing_time_ms,
'model_version': res['inference'].model_version,
'device_temp_c': res['inference'].device_temperature,
'cpu_usage_percent': res['inference'].cpu_usage_percent
}
st.json(inference_data)
with tel_col3:
with st.expander("βοΈ Motor Control", expanded=False):
motor_data = {
'start_angle': res['motor'].start_angle,
'target_angle': res['motor'].target_angle,
'current_angle': res['motor'].current_angle,
'duration_ms': res['motor'].duration_ms,
'power_consumption_mw': res['motor'].power_consumption_mw,
'torque_applied_kgcm': res['motor'].torque_applied,
'status': res['motor'].status,
'movement_steps': len(res['motor'].movement_profile)
}
st.json(motor_data)
else:
st.info("π Configure sensors and click 'Run Complete Pipeline' to start")
st.markdown("### πΊοΈ System Architecture")
st.markdown("""
**Hardware Components:**
- π· **Camera**: Raspberry Pi Camera Module v2 (1920x1080)
- π **Ultrasonic**: HC-SR04 (2-400cm range)
- π§ **Moisture**: Capacitive sensor (12-bit ADC)
- βοΈ **Weight**: HX711 Load Cell (5kg capacity)
- βοΈ **Servo**: MG996R (180Β° rotation, 11 kg-cm torque)
- π» **Edge Device**: Raspberry Pi 4 (4GB RAM, Quad-core)
**Pipeline Flow:**
1. Camera captures waste image
2. Sensors read physical properties
3. Edge AI processes multi-modal data
4. Servo routes waste to correct bin
5. Event logged to database
""")
# ==================== TAB 2: DASHBOARD ====================
with tab2:
st.subheader("π System Statistics")
stats = st.session_state.logger.get_statistics()
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Events", stats['total_events'])
with col2:
st.metric("Avg Confidence", f"{stats['average_confidence']*100:.2f}%")
with col3:
st.metric("Avg Pipeline Time", f"{stats.get('average_pipeline_time_ms', 0):.2f} ms")
with col4:
st.metric("Total Power Used", f"{stats.get('total_power_consumption_mwh', 0):.4f} mWh")
st.markdown("---")
# Class distribution chart
col_chart1, col_chart2 = st.columns(2)
with col_chart1:
st.subheader("π Waste Class Distribution")
if stats['class_distribution']:
import pandas as pd
df = pd.DataFrame(
list(stats['class_distribution'].items()),
columns=['Class', 'Count']
)
st.bar_chart(df.set_index('Class'))
else:
st.info("No data yet. Run some segregations first!")
with col_chart2:
st.subheader("β‘ System Performance")
if stats['total_events'] > 0:
st.metric("Average Inference", f"{stats.get('average_pipeline_time_ms', 0):.2f} ms")
st.metric("System Efficiency", f"{stats['average_confidence']*100:.1f}%")
st.metric("Power Efficiency", f"{stats.get('total_power_consumption_mwh', 0)*1000:.2f} mW")
else:
st.info("No performance data yet.")
# ==================== TAB 3: EVENT LOGS ====================
with tab3:
st.subheader("π Recent Events")
num_events = st.slider("Number of events to display", 5, 50, 10)
events = st.session_state.logger.get_recent_events(num_events)
if events:
import pandas as pd
df = pd.DataFrame(events)
display_cols = [
'timestamp', 'waste_class', 'confidence',
'distance_cm', 'moisture_percent', 'weight_g',
'servo_angle', 'inference_time_ms', 'total_pipeline_time_ms',
'power_consumption_mw', 'status'
]
available_cols = [col for col in display_cols if col in df.columns]
st.dataframe(
df[available_cols],
use_container_width=True,
hide_index=True
)
# Download button
csv = df.to_csv(index=False)
st.download_button(
"π₯ Download CSV",
csv,
"events.csv",
"text/csv",
use_container_width=True
)
else:
st.info("No events logged yet.")
# ==================== TAB 4: HARDWARE DIAGNOSTICS ====================
with tab4:
st.subheader("π§ Hardware Diagnostics")
diagnostics = st.session_state.logger.get_hardware_diagnostics(20)
if diagnostics:
import pandas as pd
df = pd.DataFrame(diagnostics)
st.dataframe(
df[['timestamp', 'component', 'status', 'voltage', 'current_ma', 'temperature_c', 'error_count']],
use_container_width=True,
hide_index=True
)
st.markdown("---")
# Component status
st.subheader("π Component Status")
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("##### Ultrasonic Sensor")
st.write(f"Status: {st.session_state.sensor_hub.ultrasonic.status.value}")
st.write(f"Errors: {st.session_state.sensor_hub.ultrasonic.error_count}")
st.write(f"Last Reading: {st.session_state.sensor_hub.ultrasonic.last_reading} cm")
with col2:
st.markdown("##### Servo Motor")
motor_diag = st.session_state.servo.get_diagnostics()
st.write(f"Angle: {motor_diag['current_angle']}Β°")
st.write(f"Current: {motor_diag['current_ma']} mA")
st.write(f"Temperature: {motor_diag['temperature_c']:.1f}Β°C")
with col3:
st.markdown("##### Edge Device")
st.write(f"CPU: {st.session_state.edge_ai.cpu_usage:.1f}%")
st.write(f"Temperature: {st.session_state.edge_ai.device_temp:.1f}Β°C")
st.write(f"Model: {st.session_state.edge_ai.model_version}")
else:
st.info("No diagnostics data yet.")
# ==================== TAB 5: SENSOR DETAILS ====================
with tab5:
st.subheader("π‘ Detailed Sensor Information")
col1, col2 = st.columns(2)
with col1:
st.markdown("### Ultrasonic Sensor (HC-SR04)")
st.markdown(f"""
- **Range**: {HardwareConfig.ULTRASONIC_MIN_DISTANCE} - {HardwareConfig.ULTRASONIC_MAX_DISTANCE} cm
- **Accuracy**: Β±{HardwareConfig.ULTRASONIC_ACCURACY} cm
- **Read Time**: {HardwareConfig.ULTRASONIC_READ_TIME*1000:.1f} ms
- **Operating Voltage**: 5V DC
- **Current**: 15 mA
- **Frequency**: 40 kHz
""")
st.markdown("### Capacitive Moisture Sensor")
st.markdown(f"""
- **Voltage Range**: {HardwareConfig.MOISTURE_MIN_VOLTAGE} - {HardwareConfig.MOISTURE_MAX_VOLTAGE} V
- **ADC Resolution**: {HardwareConfig.MOISTURE_ADC_RESOLUTION} bits ({2**HardwareConfig.MOISTURE_ADC_RESOLUTION} levels)
- **Read Time**: {HardwareConfig.MOISTURE_READ_TIME*1000:.1f} ms
- **Operating Voltage**: 3.3V - 5.5V
- **Current**: 5 mA
""")
with col2:
st.markdown("### Load Cell (HX711)")
st.markdown(f"""
- **Capacity**: {HardwareConfig.WEIGHT_MAX_CAPACITY} g
- **Resolution**: {HardwareConfig.WEIGHT_RESOLUTION} g
- **Stabilization Time**: {HardwareConfig.WEIGHT_STABILIZATION_TIME*1000:.0f} ms
- **Read Time**: {HardwareConfig.WEIGHT_READ_TIME*1000:.0f} ms
- **ADC**: 24-bit
- **Sample Rate**: 10/80 Hz
""")
st.markdown("### Servo Motor (MG996R)")
st.markdown(f"""
- **Rotation**: {HardwareConfig.SERVO_MIN_ANGLE}Β° - {HardwareConfig.SERVO_MAX_ANGLE}Β°
- **Speed**: 60Β°/0.17s (at 4.8V)
- **Torque**: {HardwareConfig.SERVO_TORQUE} kg-cm
- **Operating Voltage**: 4.8V - 7.2V
- **Current (Idle)**: {HardwareConfig.SERVO_CURRENT_IDLE} mA
- **Current (Moving)**: {HardwareConfig.SERVO_CURRENT_MOVING} mA
""")
st.markdown("---")
st.markdown("### π· Camera Module (Raspberry Pi Camera v2)")
st.markdown(f"""
- **Sensor**: Sony IMX219 8MP
- **Resolution**: {HardwareConfig.CAMERA_RESOLUTION[0]}x{HardwareConfig.CAMERA_RESOLUTION[1]}
- **Capture Time**: {HardwareConfig.CAMERA_CAPTURE_TIME*1000:.0f} ms
- **Warmup Time**: {HardwareConfig.CAMERA_WARMUP_TIME:.1f} s
- **Interface**: CSI (Camera Serial Interface)
- **Frame Rate**: 30 fps (1080p)
""")
st.markdown("### π» Edge Device (Raspberry Pi 4)")
st.markdown(f"""
- **CPU**: Quad-core Cortex-A72 @ 1.5GHz
- **RAM**: {HardwareConfig.RAM_MB} MB
- **Cores**: {HardwareConfig.CPU_CORES}
- **Inference Overhead**: {HardwareConfig.INFERENCE_OVERHEAD*1000:.0f} ms
- **Operating System**: Raspberry Pi OS (Linux)
- **AI Framework**: PyTorch / ONNX Runtime
""")
# Footer
st.markdown("---")
st.caption("Smart Waste Segregation System | LDRP-ITR, Gandhinagar | IDEA-ONE Hackathon 2025")
st.caption("Hardware-Realistic Simulation | Edge AI Deployment | Multi-Modal Sensor Fusion")
if __name__ == "__main__":
main() |